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Overview

• Graphons

• W -Random Graphs

• Graph Homomorphisms

• Homomorphism Density

• Kr -free & Kr -complete graphons (Theorem 1.2a)

• Conditional homomorphism density

• Kr -regular graphons

• Statement of Theorems 1.2b & 1.2c

• Proof Idea for Theorems

• Extensions & Concluding Remarks
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Graphons

Definition

A graphon is a bounded, symmetric and measurable function

W : [0, 1]2 → [0, 1] where W (x , y) = W (y , x) ∀ x , y ∈ [0, 1]

Figure: A constant graphon (Ribeiro 2021)
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Graphons

• Graphons ≈ weighted symmetric graphs with uncountably
many vertices

• Graphons ≈ limit of graph sequences

• If G is an unweighted graph, fix we = 1 for each edge e.

Figure: Sequence of random graphs sampled from a constant graphon
(Ribeiro 2021)
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W -Random Graphs

• Given W , we generate the random graph G(n,W ):

▶ Sample independently n types U1, . . . ,Un ∼ Unif(0, 1)
▶ Assign Uj to node j ∈ [1..n]
▶ Connect nodes i , j by an edge with probability W (Ui ,Uj)

• W (x , y) ≡ p ⇒ G(n,W ) equivalent to Erdős–Rényi G(n, p)
random graph
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Graph Homomorphisms

Definition

For graphs F = (V ′,E ′) & G = (V ,E ),
a graph homomorphism from F to G is a map

β : V ′ → V s.t. if (i , j) ∈ E ′, then (β(i), β(j)) ∈ E

• Adjacency-preserving map

• Homomorphism Kr → G ⇒ G contains an r -clique
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Graph Homomorphisms

Figure: Example of multiple homomorphisms F → G (Ribeiro 2021)
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Homomorphism Density for Weighted Graphs

Definition

For G = (V ,E ) on n nodes & F = (V ′,E ′) on k nodes,
the homomorphism density of F in G is:

t(F ,G ) =
1

nk

∑
β:V ′→V
graph hom.

 ∏
(i ,j)∈E ′

[A]β(i),β(j)


where A is the adjacency matrix of G .

• Weight each homomorphism β : V ′ → V by the product of
edge weights in the image of β
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Homomorphism Densities for Graphons

Definition

For a graphon W & multigraph H = (V ,E ) on n nodes, the
homomorphism density of H in W is:

t(H,W ) =

∫
[0,1]n

∏
(i ,j)∈E

W (xi , xj)
∏
i∈V

dxi

• For a clique Kr (r ≥ 2), the homomorphism density can be
defined as:

tr := t(Kr ,W ) = E

 ∏
(i ,j)∈E

W (Ui ,Uj)


• Akin to weighted graph definition, where W (xi , xj) is the

weight of edge (i , j)
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Kr -free and Kr -complete graphons

Definition

A graphon W is Kr -free if t(Kr ,W ) = 0 &
Kr -complete if t(Kr ,W ) = 1 almost everywhere.

• Let Xn,r = no. of r -cliques in G(n,W ).

Theorem

If W is Kr -free or Kr -complete,
then almost surely Xn,r = 0 or Xn,r =

(n
r

)
respectively.
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Statement of Theorem 1.2a

• Consider the graphon

W (x , y) =

{
1 if x ̸= y

0 otherwise

• W is Kr -complete ⇒ There are
(n
r

)
r -cliques

Figure: No. of 3-cliques in G(5,W ) (sampled 1000 times)
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Conditional Homomorphism Density

Definition

Let H be a graph with vertex set [k] where nodes in J ⊆ [k] are
marked. For a vector of values x = (xj)j∈J ∈ [0, 1]|J|, the
conditional density is:

tx(H,W ) = E

 ∏
{i ,j}∈E(H)

W (Ui ,Uj)

∣∣∣∣∣∣ Uj = xj : j ∈ J



• tx(Kr ,W ) is the conditional probability that G(r ,W ) = Kr

whenever each node j ∈ J has type xj
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Degree Function of a Graphon

Definition

For a graphon W , the degree function degW : [0, 1]→ [0, 1] is:

degW (x) =

∫ 1

0
W (x , y) dy

• In an Erdős–Rényi random graph G(n, p), a node has
expected degree (n − 1) · p
• In G(n,W ), a node with type x ∈ [0, 1] has expected degree
is (n − 1) · degW (x)

Definition

Say that a graphon W is regular if degW (x) ≡ d for some
constant d ∈ [0, 1].
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Kr -regular graphons

• Let K •
r := Kr with one marked node, with conditional density

tx(K
•
r ,W )

Definition (Equation 8, Hladký et al. 2021)

A graphon W is Kr -regular if for almost every x ∈ [0, 1], we have:

tx(K
•
r ,W ) = t(Kr ,W )

• Kr -regularity = generalization of graph regularity
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Statement of Theorem 1.2b

• If W is not Kr -regular, then the no. of r -cliques exhibits
fluctuations that are asymptotically Gaussian.

Figure: Numerical simulations (1000 iterations) for the distribution of
Xn,r−E[Xn,r ]

nr−1/2 in G(100,W ), where W (x , y) = xy , r = 3
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Statement of Theorem 1.2b

• Let Kr ⊖1 Kr = simple graph on 2r − 1 nodes with two copies
of Kr sharing one node
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Statement of Theorem 1.2b

Theorem

If W is not Kr -regular, then:

Xn,r −
(n
r

)
tr

nr−1/2

d−→ σ̂r ,W · Z

where Z ∼ N(0, 1) & σ̂r ,W = 1
(r−1)!

(
t(Kr ⊖1 Kr ,W )− t2r

)1/2
> 0

• View σ̂r ,W as the scaled variance of Xn,r , where:
▶ t(Kr ⊖1 Kr ,W ) ≈ E[X 2

n,r ]
▶ t2r ≈ E[Xn,r ]

2
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Motivating Example for Theorem 1.2c

Figure: K3-regular graphon where
Xn,r−E[Xn,r ]

nr−1 follows a chi-square
distribution (right picture from Hladký et al.)
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Motivating Example for Theorem 1.2c

Figure: Simulated no. of 3-cliques (1000 iterations)
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(Simplified) Statement of Theorem 1.2(c)

• Let W be a Kr -regular graphon

• Then tx(Kr ,W ) = t(Kr ,W ) for almost all x ∈ [0, 1]

Theorem

If t(Kr ,W ) is constant & t(Kr ,W ) /∈ {0, 1}, then ∃ c0, c1, . . . ∈ R
s.t.

∑
i

c2i ∈ (0,∞) and:

Xn,r − E[Xn,r ]

nr−1

d−→ coZ0 +
∑
i≥1

ci (Z
2
i − 1)

where Z0,Z1, . . . are independent standard normal.
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Theorem 1.2b Proof Idea

• Dependency Graphs

• Wasserstein Distance

22



Dependency Graphs

• Given a collection of random variables (RVs) (Yi )i∈I for some
index set I , create a dependency graph G with vertex set I

• For each vertex i ∈ I , let Ni denote the neighborhood of i ∈ G
• Construct G such that:

∀ i ∈ I , the random variable Yi is independent of {Yj}j /∈Ni

23
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Dependency Graph Example

Y1,Z ,Z
′,Y4,Y5 ∼ N(0, 1) (i.i.d standard normal)

Y2 :=
1√
2
(Y1 + Z )

Y3 :=
1√
2
(Y1 + Z ′)

Y2,Y3 ∼ N(0, 1)

• Y1,Y2,Y3 are dependent standard normal
• {Y1,Y2,Y3} are independent of Y4 and Y5, where Y4 ⊥⊥ Y5.
• G is given by:
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Wasserstein Distance

• Let dWass(X ,Y ) be the Wasserstein distance between two
RVs X ,Y

• For Z ∼ N(0, 1) and a sequence of RVs {Xn}∞n=1, consider the
well-known convergence result:

dWass(Xn,Z )→ 0 =⇒ Xn
d−→ Z

25
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Theorem 1.2b Proof Idea

• Setup: Create a dependency graph G for the collection of
RVs (YR)R , where R ⊂ [n], |R| = r < n

• In G, edges (R1,R2)←→ non-disjoint subsets R1,R2 ⊂ [n]

• How should we define the variables YR?
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Theorem 1.2b Proof Idea

• Let IR := 1(R induces a clique in G(n,W ))

• Let YR := IR − E[IR ] = IR − tr
• Then

∑
R YR = Xn,r −

(n
r

)
tr

• The proof consists of two steps:

1. Bound the maximum degree of any node in G
2. Compute the asymptotics of the variance of

∑
R YR
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Theorem 1.2b Proof Idea

• Step 1: In G, each neighbourhood NR has the same size

r∑
l=1

(
r

l

)(
n − r

r − l

)
= O(nr−1)

28



Theorem 1.2b Proof Idea

• Let σ2
n = Var [

∑
R YR ]

• Step 2: Show that dWass

(∑
R YR

σn
,Z

)
= O(n−1/2)

• Hence
∑

R YR

σn

d−→ Z

• Since
∑

R YR = Xn,r −
(n
r

)
tr , this completes the proof.
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Theorem 1.2c Proof Idea

• Objective: Use the method of moments to establish

distributional convergence of
Xn,r−(nr)tr

nr−1

• Computing coefficients involves examining the isomorphism
classes of hypergraphs induced by collections of vertex subsets
of G(n,W )
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Extensions

• Bhattacharya, Chatterjee & Janson (2022) extended these
results for general subgraphs H in W -random graphs
• Analogous notion of H-regular graphons:

▶ If W is not H-regular, then the distribution of Xn(H,W ) is
asymptotically Gaussian

▶ If W is H-regular, then the limiting distribution of Xn(H,W )
consists of a Gaussian term and a Chi-squared term
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Extensions

• Kaur & Röllin (2021) provide a central limit theorem for
centred subgraph counts in W -random graphs, demonstrating
distributional convergence to Gaussians

• Developed test statistics for determining the presence of
certain subgraphs (eg. two edges sharing a common vertex)
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Concluding Remarks

• We study a limit theorem for complete subgraph counts in
W -random graphs, which exhibits normal or chi-square
behavior

• Open problems:
▶ Find the no. of cliques & other subgraphs in sparse

G(n, p ·W ) where p = p(n)→ 0 as n→∞
▶ Prove analogous results for W -random hypergraphs
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Appendices

In the following slides, we discuss the high-level idea for the proofs for
Theorems 1.2b-c in greater detail.
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r -Uniform Hypergraphs, Clique Graphs

Definition

For r ≥ 2, a r-uniform hypergraph H on a vertex set V is a collection
of r -element subsets (hyperedges) of V .

Definition

Given a hypergraph H, the graph associated with H (clique graph of
H) is a graph on the same vertex set, where each hyperedge S of H is
replaced by a clique on S , with multiple edges replaced by single edges.
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Loose Cycles (Hypergraph version of cycles)

• For l ≥ 2, let C
(r)
l be a r -uniform hypergraph with l hyperedges.

• To construct C
(r)
l , take the cycle graph Cl , and for each edge, insert

an additional r − 2 nodes, where all l(r − 2) new nodes are distinct.

• Then let Gl,r be the graph associated with C
(r)
l .

Figure: Examples of hypergraphs C
(r)
l and their associated graphs Gl,r

(Hladký et al. 2021)
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Spectrum of a Graphon

• Each graphon has an associated integral linear operator

TW : L2[0, 1]→ L2[0, 1], where (TW f )(x) =
∫ 1

0
W (x , y)f (y) dy

• TW is a Hilbert-Schmidt operator and that there are countably
many non-zero real eigenvalues associated with W .

• It can be shown that if W is a regular graphon, i.e. degW (x) ≡ d
for some constant d , then W has an eigenfunction f ≡ 1 with
associated eigenvalue d .

• Let −(W ) be the multiset of eigenvalues of W , where the
multiplicity of the eigenvalue d is decreased by 1.
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The Graphon V
(r)
W

• For any graphon W and r ≥ 2, define the graphon V
(r)
W as:

V
(r)
W (x , y) = tx,y (K

••
r ,W )

• View V
(r)
W (x , y) as the conditional density of r -cliques containing

nodes with types x , y

• It can be shown that if W is Kr -regular ⇐⇒ V
(r)
W is regular
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Full Statement of Theorem 1.2(c)

• Suppose W is a Kr -regular graphon that is neither Kr -free nor
complete.

• Recall that Xn,r denotes the no. of r -cliques in G(n,W ). Then:

Theorem (Theorem 1.2c (abridged), Hladký et al. 2021)

Let r ≥ 2 and set tr = t(Kr ,W ). Then:

Xn,r −
(
n
r

)
tr

nr−1

d−→ σr ,W · Z +
1

2(r − 2)!

∑
λ∈Spec−(V

(r)
W )

λ(Z 2
λ − 1)

where Z and (Zλ)λ∈Spec−(V
(r)
W )

are independent standard normal.
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The Parameter σ2
r ,W

• Let Kr ⊕2 Kr denote the simple graph consisting of two r -cliques
sharing 2 nodes (total of 2r − 2 nodes)

• Let Kr ⊖2 Kr denote the multigraph obtained from Kr ⊕2 Kr where
we duplicate the shared edge.

• (Equation 9, Hladký et al. 2021) We have that:

tx,y (Kr ⊕2 Kr ,W ) = W (x , y)tx,y (Kr ⊖2 Kr ,W )

= (tx,y (K
••
r ,W ))2

= (V
(r)
W (x , y))2

Then define:

σ2
r ,W :=

1

2((r − 2)!)2
(t(Kr ⊖2 Kr ,W )− t(Kr ⊕2 Kr ,W ))
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Theorem 1.2c Proof Idea

• Analyse the structure of tuples (R1, . . . ,Rm) where each Ri is a
subset of vertices of G(n,W )

• Let X(n, r ,m) be the set of m-tuples where ∃i ∈ [m] such that
|Ri ∩ (∪j ̸=iRj) | ≤ 1

• Let ∆(R1, . . . ,Rm) := E
[∏m

i=1(IRi − tr )
]
, and show that

∆(R1, . . . ,Rm) = 0 for all tuples in X(n, r ,m).

• Let F(n, r ,m) be tuples not in X(n, r ,m), where the corresponding
hypergraph H has (r − 1)m nodes. One can show that such an H is
a union of vertex-disjoint loose cycles.
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Theorem 1.2c Proof Idea (cont.)

• Isomorphism classes of H can be encoded by a vector k where i-th

component = no. of loose cycles of length i , where H(r)
k is the

hypergraph formed by ki copies of the loose cycle C
(r)
i

• Claim 4.3: Show that the contribution ∆(R1, . . . ,Rm) for each tuple
is the same, and obtain an explicit expression for the contribution.

• Claim 4.4: Count the no. of tuples in the isomorphism classes of H.
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Theorem 1.2c Proof Idea (cont.)

• Claim 4.5: Express E[(Xn,r −
(
n
r

)
tr )

m] as a formal power series f (x),
and use results from previous claims to compute coefficients.

• Claim 4.6: Show that the MGF of Y is equal to f (x) within a
neighborhood of zero. (This verifies that the MGF of Y is finite in
this neighborhood, so the distribution of Y is determined by its
moments.)
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