An overview of Hladký et al's (2021) Work on Inhomogeneous W-Random Graphs

Ernest Ng

Advised by Anirban Chaterjee \& Prof. Bhaswar Bhattacharya

Undergraduate Research in Probability \& Statistics Program 12 May 2022

Paper discussed

Hladký, Jan, et al. "A Limit Theorem for Small Cliques in Inhomogeneous Random Graphs." Journal of Graph Theory, vol. 97, no. 4, 2021, pp. 578-599,
https://arxiv.org/abs/1903.10570

Overview

- Graphons
- W-Random Graphs
- Graph Homomorphisms
- Homomorphism Density
- K_{r}-free \& K_{r}-complete graphons (Theorem 1.2a)
- Conditional homomorphism density
- K_{r}-regular graphons
- Statement of Theorems 1.2 b \& 1.2 c
- Proof Idea for Theorems
- Extensions \& Concluding Remarks

Graphons

Definition

A graphon is a bounded, symmetric and measurable function

$$
W:[0,1]^{2} \rightarrow[0,1] \quad \text { where } W(x, y)=W(y, x) \forall x, y \in[0,1]
$$

Uniform (Erdős-Rényi)

$$
W(u, v)=p
$$

Figure: A constant graphon (Ribeiro 2021)

Graphons

- Graphons \approx weighted symmetric graphs with uncountably many vertices
- Graphons \approx limit of graph sequences
- If G is an unweighted graph, fix $w_{e}=1$ for each edge e.

Figure: Sequence of random graphs sampled from a constant graphon (Ribeiro 2021)

W-Random Graphs

- Given W, we generate the random graph $\mathbb{G}(n, W)$:

W-Random Graphs

- Given W, we generate the random graph $\mathbb{G}(n, W)$:
- Sample independently n types $U_{1}, \ldots, U_{n} \sim \operatorname{Unif}(0,1)$

W-Random Graphs

- Given W, we generate the random graph $\mathbb{G}(n, W)$:
- Sample independently n types $U_{1}, \ldots, U_{n} \sim \operatorname{Unif}(0,1)$
- Assign U_{j} to node $j \in[1 . . n]$

W-Random Graphs

- Given W, we generate the random graph $\mathbb{G}(n, W)$:
- Sample independently n types $U_{1}, \ldots, U_{n} \sim \operatorname{Unif}(0,1)$
- Assign U_{j} to node $j \in[1 . . n]$
- Connect nodes i, j by an edge with probability $W\left(U_{i}, U_{j}\right)$

W-Random Graphs

- Given W, we generate the random graph $\mathbb{G}(n, W)$:
- Sample independently n types $U_{1}, \ldots, U_{n} \sim \operatorname{Unif}(0,1)$
- Assign U_{j} to node $j \in[1 . . n]$
- Connect nodes i, j by an edge with probability $W\left(U_{i}, U_{j}\right)$

W-Random Graphs

- Given W, we generate the random graph $\mathbb{G}(n, W)$:
- Sample independently n types $U_{1}, \ldots, U_{n} \sim \operatorname{Unif}(0,1)$
- Assign U_{j} to node $j \in[1 . . n]$
- Connect nodes i, j by an edge with probability $W\left(U_{i}, U_{j}\right)$

- $W(x, y) \equiv p \Rightarrow \mathbb{G}(n, W)$ equivalent to Erdős-Rényi $\mathbb{G}(n, p)$ random graph

Graph Homomorphisms

Definition

For graphs $F=\left(V^{\prime}, E^{\prime}\right) \& G=(V, E)$,
a graph homomorphism from F to G is a map

$$
\beta: V^{\prime} \rightarrow V \quad \text { s.t. if }(i, j) \in E^{\prime} \text {, then }(\beta(i), \beta(j)) \in E
$$

Graph Homomorphisms

Definition

For graphs $F=\left(V^{\prime}, E^{\prime}\right) \& G=(V, E)$,
a graph homomorphism from F to G is a map

$$
\beta: V^{\prime} \rightarrow V \quad \text { s.t. if }(i, j) \in E^{\prime} \text {, then }(\beta(i), \beta(j)) \in E
$$

- Adjacency-preserving map
- Homomorphism $K_{r} \rightarrow G \Rightarrow G$ contains an r-clique

Graph Homomorphisms

Figure: Example of multiple homomorphisms $F \rightarrow G$ (Ribeiro 2021)

Homomorphism Density for Weighted Graphs

Definition

For $G=(V, E)$ on n nodes \& $F=\left(V^{\prime}, E^{\prime}\right)$ on k nodes, the homomorphism density of F in G is:

$$
t(F, G)=\frac{1}{n^{k}} \sum_{\substack{\beta: V^{\prime} \rightarrow V \\ \text { graph hom. }}}\left(\prod_{(i, j) \in E^{\prime}}[A]_{\beta(i), \beta(j)}\right)
$$

where A is the adjacency matrix of G.

Homomorphism Density for Weighted Graphs

Definition

For $G=(V, E)$ on n nodes \& $F=\left(V^{\prime}, E^{\prime}\right)$ on k nodes, the homomorphism density of F in G is:

$$
t(F, G)=\frac{1}{n^{k}} \sum_{\substack{\beta: V^{\prime} \rightarrow V \\ \text { graph hom. }}}\left(\prod_{(i, j) \in E^{\prime}}[A]_{\beta(i), \beta(j)}\right)
$$

where A is the adjacency matrix of G.

- Weight each homomorphism $\beta: V^{\prime} \rightarrow V$ by the product of edge weights in the image of β

Homomorphism Densities for Graphons

Definition

For a graphon W \& multigraph $H=(V, E)$ on n nodes, the homomorphism density of H in W is:

$$
t(H, W)=\int_{[0,1]^{n}} \prod_{(i, j) \in E} W\left(x_{i}, x_{j}\right) \prod_{i \in V} d x_{i}
$$

Homomorphism Densities for Graphons

Definition

For a graphon W \& multigraph $H=(V, E)$ on n nodes, the homomorphism density of H in W is:

$$
t(H, W)=\int_{[0,1]^{n}} \prod_{(i, j) \in E} W\left(x_{i}, x_{j}\right) \prod_{i \in V} d x_{i}
$$

- For a clique $K_{r}(r \geq 2)$, the homomorphism density can be defined as:

$$
t_{r}:=t\left(K_{r}, W\right)=\mathbb{E}\left[\prod_{(i, j) \in E} W\left(U_{i}, U_{j}\right)\right]
$$

Homomorphism Densities for Graphons

Definition

For a graphon W \& multigraph $H=(V, E)$ on n nodes, the homomorphism density of H in W is:

$$
t(H, W)=\int_{[0,1]^{n}} \prod_{(i, j) \in E} W\left(x_{i}, x_{j}\right) \prod_{i \in V} d x_{i}
$$

- For a clique $K_{r}(r \geq 2)$, the homomorphism density can be defined as:

$$
t_{r}:=t\left(K_{r}, W\right)=\mathbb{E}\left[\prod_{(i, j) \in E} W\left(U_{i}, U_{j}\right)\right]
$$

- Akin to weighted graph definition, where $W\left(x_{i}, x_{j}\right)$ is the weight of edge (i, j)

K_{r}-free and K_{r}-complete graphons

Definition

A graphon W is K_{r}-free if $t\left(K_{r}, W\right)=0$ \& K_{r}-complete if $t\left(K_{r}, W\right)=1$ almost everywhere.

K_{r}-free and K_{r}-complete graphons

Definition

A graphon W is K_{r}-free if $t\left(K_{r}, W\right)=0$ \& K_{r}-complete if $t\left(K_{r}, W\right)=1$ almost everywhere.

- Let $X_{n, r}=$ no. of r-cliques in $\mathbb{G}(n, W)$.

> Theorem
> If W is K_{r}-free or K_{r}-complete, then almost surely $X_{n, r}=0$ or $X_{n, r}=\binom{n}{r}$ respectively.

Statement of Theorem 1.2a

- Consider the graphon

$$
W(x, y)=\left\{\begin{array}{lc}
1 & \text { if } x \neq y \\
0 & \text { otherwise }
\end{array}\right.
$$

Statement of Theorem 1.2a

- Consider the graphon

$$
W(x, y)=\left\{\begin{array}{lc}
1 & \text { if } x \neq y \\
0 & \text { otherwise }
\end{array}\right.
$$

- W is K_{r}-complete \Rightarrow There are $\binom{n}{r} r$-cliques

Figure: No. of 3-cliques in $\mathbb{G}(5, W)$ (sampled 1000 times)

Conditional Homomorphism Density

Definition

Let H be a graph with vertex set $[k]$ where nodes in $J \subseteq[k]$ are marked. For a vector of values $\mathbf{x}=\left(x_{j}\right)_{j \in J} \in[0,1]^{|J|}$, the conditional density is:

$$
t_{x}(H, W)=\mathbb{E}\left[\prod_{\{i, j\} \in E(H)} W\left(U_{i}, U_{j}\right) \mid U_{j}=x_{j}: j \in J\right]
$$

Conditional Homomorphism Density

Definition

Let H be a graph with vertex set $[k]$ where nodes in $J \subseteq[k]$ are marked. For a vector of values $\mathbf{x}=\left(x_{j}\right)_{j \in J} \in[0,1]^{|J|}$, the conditional density is:

$$
t_{\mathrm{x}}(H, W)=\mathbb{E}\left[\prod_{\{i, j\} \in E(H)} W\left(U_{i}, U_{j}\right) \mid U_{j}=x_{j}: j \in J\right]
$$

- $t_{\mathrm{x}}\left(K_{r}, W\right)$ is the conditional probability that $\mathbb{G}(r, W)=K_{r}$ whenever each node $j \in J$ has type x_{j}

Degree Function of a Graphon

Definition

For a graphon W, the degree function $\operatorname{deg}_{W}:[0,1] \rightarrow[0,1]$ is:

$$
\operatorname{deg}_{W}(x)=\int_{0}^{1} W(x, y) d y
$$

Degree Function of a Graphon

Definition

For a graphon W, the degree function $\operatorname{deg}_{W}:[0,1] \rightarrow[0,1]$ is:

$$
\operatorname{deg}_{W}(x)=\int_{0}^{1} W(x, y) d y
$$

- In an Erdős-Rényi random graph $\mathbb{G}(n, p)$, a node has expected degree $(n-1) \cdot p$
- In $\mathbb{G}(n, W)$, a node with type $x \in[0,1]$ has expected degree is $(n-1) \cdot \operatorname{deg}_{W}(x)$

Degree Function of a Graphon

Definition

For a graphon W, the degree function $\operatorname{deg}_{W}:[0,1] \rightarrow[0,1]$ is:

$$
\operatorname{deg}_{W}(x)=\int_{0}^{1} W(x, y) d y
$$

- In an Erdős-Rényi random graph $\mathbb{G}(n, p)$, a node has expected degree $(n-1) \cdot p$
- In $\mathbb{G}(n, W)$, a node with type $x \in[0,1]$ has expected degree is $(n-1) \cdot \operatorname{deg}_{W}(x)$

Definition

Say that a graphon W is regular if $\operatorname{deg}_{W}(x) \equiv d$ for some constant $d \in[0,1]$.

K_{r}-regular graphons

- Let $K_{r}^{\bullet}:=K_{r}$ with one marked node, with conditional density $t_{\chi}\left(K_{r}^{\bullet}, W\right)$

K_{r}-regular graphons

- Let $K_{r}^{\bullet}:=K_{r}$ with one marked node, with conditional density $t_{\chi}\left(K_{r}^{\bullet}, W\right)$

Definition (Equation 8, Hladký et al. 2021)
A graphon W is K_{r}-regular if for almost every $x \in[0,1]$, we have:

$$
t_{x}\left(K_{r}^{\bullet}, W\right)=t\left(K_{r}, W\right)
$$

- K_{r}-regularity $=$ generalization of graph regularity

Statement of Theorem 1.2b

- If W is not K_{r}-regular, then the no. of r-cliques exhibits fluctuations that are asymptotically Gaussian.

Figure: Numerical simulations (1000 iterations) for the distribution of $\frac{X_{n, r}-\mathbb{E}\left[X_{n, r}\right]}{n^{r-1 / 2}}$ in $\mathbb{G}(100, W)$, where $W(x, y)=x y, r=3$

Statement of Theorem 1.2b

- Let $K_{r} \ominus_{1} K_{r}=$ simple graph on $2 r-1$ nodes with two copies of K_{r} sharing one node

$K_{3} \theta_{1} K_{3}$

$K_{5} \theta_{1} K_{5}$

Statement of Theorem 1.2b

Theorem

If W is not K_{r}-regular, then:

$$
\frac{X_{n, r}-\binom{n}{r} t_{r}}{n^{r-1 / 2}} \xrightarrow{d} \hat{\sigma}_{r, W} \cdot Z
$$

where $Z \sim N(0,1) \& \hat{\sigma}_{r, W}=\frac{1}{(r-1)!}\left(t\left(K_{r} \ominus_{1} K_{r}, W\right)-t_{r}^{2}\right)^{1 / 2}>0$

Statement of Theorem 1.2b

Theorem

If W is not K_{r}-regular, then:

$$
\frac{X_{n, r}-\binom{n}{r} t_{r}}{n^{r-1 / 2}} \xrightarrow{d} \hat{\sigma}_{r, W} \cdot Z
$$

where $Z \sim N(0,1) \& \hat{\sigma}_{r, W}=\frac{1}{(r-1)!}\left(t\left(K_{r} \ominus_{1} K_{r}, W\right)-t_{r}^{2}\right)^{1 / 2}>0$

- View $\hat{\sigma}_{r, W}$ as the scaled variance of $X_{n, r}$, where:
- $t\left(K_{r} \ominus_{1} K_{r}, W\right) \approx \mathbb{E}\left[X_{n, r}^{2}\right]$
- $t_{r}^{2} \approx \mathbb{E}\left[X_{n, r}\right]^{2}$

Motivating Example for Theorem 1.2c

Figure: K_{3}-regular graphon where $\frac{X_{n, r}-\mathbb{E}\left[X_{n, r}\right]}{n^{r-1}}$ follows a chi-square distribution (right picture from Hladký et al.)

Motivating Example for Theorem 1.2c

Distribution of No. of 3-cliques (Scaled and Centred) for K_{3}-regular graphon

Figure: Simulated no. of 3-cliques (1000 iterations)

(Simplified) Statement of Theorem 1.2(c)

- Let W be a K_{r}-regular graphon

(Simplified) Statement of Theorem 1.2(c)

- Let W be a K_{r}-regular graphon
- Then $t_{x}\left(K_{r}, W\right)=t\left(K_{r}, W\right)$ for almost all $x \in[0,1]$

(Simplified) Statement of Theorem 1.2(c)

- Let W be a K_{r}-regular graphon
- Then $t_{x}\left(K_{r}, W\right)=t\left(K_{r}, W\right)$ for almost all $x \in[0,1]$

```
Theorem
If \(t\left(K_{r}, W\right)\) is constant \& \(t\left(K_{r}, W\right) \notin\{0,1\}\), then \(\exists c_{0}, c_{1}, \ldots \in \mathbb{R}\)
s.t. \(\sum_{i} c_{i}^{2} \in(0, \infty)\) and:
\[
\frac{X_{n, r}-\mathbb{E}\left[X_{n, r}\right]}{n^{r-1}} \xrightarrow{d} c_{0} Z_{0}+\sum_{i \geq 1} c_{i}\left(Z_{i}^{2}-1\right)
\]
where \(Z_{0}, Z_{1}, \ldots\) are independent standard normal.
```


Theorem 1.2b Proof Idea

- Dependency Graphs
- Wasserstein Distance

Dependency Graphs

- Given a collection of random variables (RVs) $\left(Y_{i}\right)_{i \in I}$ for some index set I, create a dependency graph \mathcal{G} with vertex set I

Dependency Graphs

- Given a collection of random variables (RVs) $\left(Y_{i}\right)_{i \in I}$ for some index set I, create a dependency graph \mathcal{G} with vertex set I
- For each vertex $i \in I$, let N_{i} denote the neighborhood of $i \in \mathcal{G}$

Dependency Graphs

- Given a collection of random variables (RVs) $\left(Y_{i}\right)_{i \in I}$ for some index set I, create a dependency graph \mathcal{G} with vertex set I
- For each vertex $i \in I$, let N_{i} denote the neighborhood of $i \in \mathcal{G}$
- Construct \mathcal{G} such that:
$\forall i \in I$, the random variable Y_{i} is independent of $\left\{Y_{j}\right\}_{j \notin N_{i}}$

Dependency Graph Example

$$
\begin{aligned}
Y_{1}, Z, & Z^{\prime}, Y_{4}, Y_{5} \sim N(0,1) \quad \text { (i.i.d standard normal) } \\
Y_{2} & :=\frac{1}{\sqrt{2}}\left(Y_{1}+Z\right) \\
Y_{3} & :=\frac{1}{\sqrt{2}}\left(Y_{1}+Z^{\prime}\right) \\
Y_{2}, Y_{3} & \sim N(0,1)
\end{aligned}
$$

Dependency Graph Example

$$
\begin{aligned}
& Y_{1}, Z, Z^{\prime}, Y_{4}, Y_{5} \sim N(0,1) \quad \text { (i.i.d standard normal) } \\
& Y_{2}:=\frac{1}{\sqrt{2}}\left(Y_{1}+Z\right) \\
& Y_{3}:=\frac{1}{\sqrt{2}}\left(Y_{1}+Z^{\prime}\right) \\
& Y_{2}, Y_{3} \sim N(0,1)
\end{aligned}
$$

- Y_{1}, Y_{2}, Y_{3} are dependent standard normal

Dependency Graph Example

$$
\begin{aligned}
& Y_{1}, Z, Z^{\prime}, Y_{4}, Y_{5} \sim N(0,1) \quad \text { (i.i.d standard normal) } \\
& Y_{2}:=\frac{1}{\sqrt{2}}\left(Y_{1}+Z\right) \\
& Y_{3}:=\frac{1}{\sqrt{2}}\left(Y_{1}+Z^{\prime}\right) \\
& Y_{2}, Y_{3} \sim N(0,1)
\end{aligned}
$$

- Y_{1}, Y_{2}, Y_{3} are dependent standard normal
- $\left\{Y_{1}, Y_{2}, Y_{3}\right\}$ are independent of Y_{4} and Y_{5}, where $Y_{4} \Perp Y_{5}$.

Dependency Graph Example

$$
\begin{aligned}
& Y_{1}, Z, Z^{\prime}, Y_{4}, Y_{5} \sim N(0,1) \quad \text { (i.i.d standard normal) } \\
& Y_{2}:=\frac{1}{\sqrt{2}}\left(Y_{1}+Z\right) \\
& Y_{3}:=\frac{1}{\sqrt{2}}\left(Y_{1}+Z^{\prime}\right) \\
& Y_{2}, Y_{3} \sim N(0,1)
\end{aligned}
$$

- Y_{1}, Y_{2}, Y_{3} are dependent standard normal
- $\left\{Y_{1}, Y_{2}, Y_{3}\right\}$ are independent of Y_{4} and Y_{5}, where $Y_{4} \Perp Y_{5}$.
- \mathcal{G} is given by:

Wasserstein Distance

- Let $d_{\text {Wass }}(X, Y)$ be the Wasserstein distance between two RVs X, Y

Wasserstein Distance

- Let $d_{\text {Wass }}(X, Y)$ be the Wasserstein distance between two RVs X, Y
- For $Z \sim N(0,1)$ and a sequence of $\operatorname{RVs}\left\{X_{n}\right\}_{n=1}^{\infty}$, consider the well-known convergence result:

$$
d_{\text {Wass }}\left(X_{n}, Z\right) \rightarrow 0 \Longrightarrow X_{n} \xrightarrow{d} Z
$$

Theorem 1.2b Proof Idea

- Setup: Create a dependency graph \mathcal{G} for the collection of RVs $\left(Y_{R}\right)_{R}$, where $R \subset[n],|R|=r<n$

Theorem 1.2b Proof Idea

- Setup: Create a dependency graph \mathcal{G} for the collection of RVs $\left(Y_{R}\right)_{R}$, where $R \subset[n],|R|=r<n$
- In \mathcal{G}, edges $\left(R_{1}, R_{2}\right) \longleftrightarrow$ non-disjoint subsets $R_{1}, R_{2} \subset[n]$
- How should we define the variables Y_{R} ?

Theorem 1.2b Proof Idea

- Let $I_{R}:=\mathbf{1}(R$ induces a clique in $\mathbb{G}(n, W))$

Theorem 1.2b Proof Idea

- Let $I_{R}:=\mathbf{1}(R$ induces a clique in $\mathbb{G}(n, W))$
- Let $Y_{R}:=I_{R}-\mathbb{E}\left[I_{R}\right]=I_{R}-t_{r}$
- Then $\sum_{R} Y_{R}=X_{n, r}-\binom{n}{r} t_{r}$

Theorem 1.2b Proof Idea

- Let $I_{R}:=\mathbf{1}(R$ induces a clique in $\mathbb{G}(n, W))$
- Let $Y_{R}:=I_{R}-\mathbb{E}\left[I_{R}\right]=I_{R}-t_{r}$
- Then $\sum_{R} Y_{R}=X_{n, r}-\binom{n}{r} t_{r}$
- The proof consists of two steps:

1. Bound the maximum degree of any node in \mathcal{G}
2. Compute the asymptotics of the variance of $\sum_{R} Y_{R}$

Theorem 1.2b Proof Idea

- Step 1: $\ln \mathcal{G}$, each neighbourhood N_{R} has the same size

$$
\sum_{l=1}^{r}\binom{r}{l}\binom{n-r}{r-l}=O\left(n^{r-1}\right)
$$

Theorem 1.2b Proof Idea

- Let $\sigma_{n}^{2}=\operatorname{Var}\left[\sum_{R} Y_{R}\right]$

Theorem 1.2b Proof Idea

- Let $\sigma_{n}^{2}=\operatorname{Var}\left[\sum_{R} Y_{R}\right]$
- Step 2: Show that $d_{\text {Wass }}\left(\frac{\sum_{R} Y_{R}}{\sigma_{n}}, Z\right)=O\left(n^{-1 / 2}\right)$
- Hence $\frac{\sum_{R} Y_{R}}{\sigma_{n}} \xrightarrow{d} Z$

Theorem 1.2b Proof Idea

- Let $\sigma_{n}^{2}=\operatorname{Var}\left[\sum_{R} Y_{R}\right]$
- Step 2: Show that $d_{\text {Wass }}\left(\frac{\sum_{R} Y_{R}}{\sigma_{n}}, Z\right)=O\left(n^{-1 / 2}\right)$
- Hence $\frac{\sum_{R} Y_{R}}{\sigma_{n}} \xrightarrow{d} Z$
- Since $\sum_{R} Y_{R}=X_{n, r}-\binom{n}{r} t_{r}$, this completes the proof.

Theorem 1.2c Proof Idea

- Objective: Use the method of moments to establish distributional convergence of $\frac{X_{n, r}-\binom{n}{r} t_{r}}{n_{r}^{r-1}}$
- Computing coefficients involves examining the isomorphism classes of hypergraphs induced by collections of vertex subsets of $\mathbb{G}(n, W)$

Extensions

- Bhattacharya, Chatterjee \& Janson (2022) extended these results for general subgraphs H in W-random graphs
- Analogous notion of H-regular graphons:
- If W is not H-regular, then the distribution of $X_{n}(H, W)$ is asymptotically Gaussian
- If W is H-regular, then the limiting distribution of $X_{n}(H, W)$ consists of a Gaussian term and a Chi-squared term

Extensions

- Kaur \& Röllin (2021) provide a central limit theorem for centred subgraph counts in W-random graphs, demonstrating distributional convergence to Gaussians
- Developed test statistics for determining the presence of certain subgraphs (eg. two edges sharing a common vertex)

Concluding Remarks

- We study a limit theorem for complete subgraph counts in W-random graphs, which exhibits normal or chi-square behavior

Concluding Remarks

- We study a limit theorem for complete subgraph counts in W-random graphs, which exhibits normal or chi-square behavior
- Open problems:
- Find the no. of cliques \& other subgraphs in sparse $\mathbb{G}(n, p \cdot W)$ where $p=p(n) \rightarrow 0$ as $n \rightarrow \infty$
- Prove analogous results for W-random hypergraphs

Acknowledgements

Thank you for listening!

Special thanks to
Anirban Chatterjee \& Professor Bhaswar Bhattacharya

References

Alejandro Riebeiro, "Graphon Signal Processing." Electrical \& Systems Engineering Department, University of Pennsylvania, 25 Oct. 2021, https://gnn.seas.upenn.edu/wp-content/uploads/2020/11/ lecture_9_handout.pdf

Bhaswar Chattacharya, Anirban Chatterjee, Svante Janson. "Fluctuations of Subgraph Counts in Graphon Based Random Graphs." Department of Statistics, University of Pennsylvania, 17 Jan. 2021, https://arxiv.org/abs/2104.07259

Gursharn Kaur, Adrian Röllin. "Higher-Order Fluctuations in Dense Random Graph Models." Department of Statistics \& Applied Probability, National University of Singapore, 16 Jun. 2021, https://arxiv.org/abs/2006.15805v2

Jan Hladký, Christos Pelekis, Matas Šileikis. "A Limit Theorem for Small Cliques in Inhomogeneous Random Graphs." Journal of Graph Theory, vol. 97, no. 4, 2021, pp. 578-599, https://arxiv.org/abs/1903.10570

Appendices

In the following slides, we discuss the high-level idea for the proofs for Theorems $1.2 \mathrm{~b}-\mathrm{c}$ in greater detail.

r-Uniform Hypergraphs, Clique Graphs

Definition

For $r \geq 2$, a r-uniform hypergraph \mathcal{H} on a vertex set V is a collection of r-element subsets (hyperedges) of V.

Definition

Given a hypergraph \mathcal{H}, the graph associated with \mathcal{H} (clique graph of \mathcal{H}) is a graph on the same vertex set, where each hyperedge S of \mathcal{H} is replaced by a clique on S, with multiple edges replaced by single edges.

Loose Cycles (Hypergraph version of cycles)

- For $I \geq 2$, let $C_{l}^{(r)}$ be a r-uniform hypergraph with I hyperedges.
- To construct $C_{l}^{(r)}$, take the cycle graph C_{l}, and for each edge, insert an additional $r-2$ nodes, where all $I(r-2)$ new nodes are distinct.
- Then let $G_{l, r}$ be the graph associated with $C_{l}^{(r)}$.

Figure: Examples of hypergraphs $C_{l}^{(r)}$ and their associated graphs $G_{l, r}$ (Hladký et al. 2021)

Spectrum of a Graphon

- Each graphon has an associated integral linear operator $T_{W}: L^{2}[0,1] \rightarrow L^{2}[0,1]$, where $\left(T_{W} f\right)(x)=\int_{0}^{1} W(x, y) f(y) d y$
- T_{W} is a Hilbert-Schmidt operator and that there are countably many non-zero real eigenvalues associated with W.
- It can be shown that if W is a regular graphon, i.e. $\operatorname{deg}_{W}(x) \equiv d$ for some constant d, then W has an eigenfunction $f \equiv 1$ with associated eigenvalue d.
- Let ${ }^{-}(W)$ be the multiset of eigenvalues of W, where the multiplicity of the eigenvalue d is decreased by 1 .

The Graphon $V_{W}^{(r)}$

- For any graphon W and $r \geq 2$, define the graphon $V_{W}^{(r)}$ as:

$$
V_{W}^{(r)}(x, y)=t_{x, y}\left(K_{r}^{\bullet \bullet}, W\right)
$$

- View $V_{W}^{(r)}(x, y)$ as the conditional density of r-cliques containing nodes with types x, y
- It can be shown that if W is K_{r}-regular $\Longleftrightarrow V_{W}^{(r)}$ is regular

Full Statement of Theorem 1.2(c)

- Suppose W is a K_{r}-regular graphon that is neither K_{r}-free nor complete.
- Recall that $X_{n, r}$ denotes the no. of r-cliques in $\mathbb{G}(n, W)$. Then:

$$
\begin{aligned}
& \text { Theorem (Theorem 1.2c (abridged), Hladký et al. 2021) } \\
& \text { Let } r \geq 2 \text { and set } t_{r}=t\left(K_{r}, W\right) \text {. Then: } \\
& \qquad \frac{X_{n, r}-\binom{n}{r} t_{r}}{n^{r-1}} \xrightarrow{d} \sigma_{r, W} \cdot Z+\frac{1}{2(r-2)!} \sum_{\lambda \in \operatorname{Spec}^{-}\left(V_{W}^{(r)}\right)} \lambda\left(Z_{\lambda}^{2}-1\right)
\end{aligned}
$$

where Z and $\left(Z_{\lambda}\right)_{\lambda \in \operatorname{Spec}^{-}\left(V_{w}^{(r)}\right)}$ are independent standard normal.

The Parameter $\sigma_{r, w}^{2}$

- Let $K_{r} \oplus_{2} K_{r}$ denote the simple graph consisting of two r-cliques sharing 2 nodes (total of $2 r-2$ nodes)
- Let $K_{r} \ominus_{2} K_{r}$ denote the multigraph obtained from $K_{r} \oplus_{2} K_{r}$ where we duplicate the shared edge.

- (Equation 9, Hladký et al. 2021) We have that:

$$
\begin{aligned}
t_{x, y}\left(K_{r} \oplus_{2} K_{r}, W\right) & =W(x, y) t_{x, y}\left(K_{r} \ominus_{2} K_{r}, W\right) \\
& =\left(t_{x, y}\left(K_{r}^{\bullet \bullet}, W\right)\right)^{2} \\
& =\left(V_{W}^{(r)}(x, y)\right)^{2}
\end{aligned}
$$

Then define:

$$
\sigma_{r, W}^{2}:=\frac{1}{2((r-2)!)^{2}}\left(t\left(K_{r} \ominus_{2} K_{r}, W\right)-t\left(K_{r} \oplus_{2} K_{r}, W\right)\right)
$$

Theorem 1.2c Proof Idea

- Analyse the structure of tuples $\left(R_{1}, \ldots, R_{m}\right)$ where each R_{i} is a subset of vertices of $\mathbb{G}(n, W)$
- Let $\mathfrak{X}(n, r, m)$ be the set of m-tuples where $\exists i \in[m]$ such that $\left|R_{i} \cap\left(\cup_{j \neq i} R_{j}\right)\right| \leq 1$
- Let $\Delta\left(R_{1}, \ldots, R_{m}\right):=\mathbb{E}\left[\prod_{i=1}^{m}\left(I_{R_{i}}-t_{r}\right)\right]$, and show that $\Delta\left(R_{1}, \ldots, R_{m}\right)=0$ for all tuples in $\mathfrak{X}(n, r, m)$.
- Let $\mathfrak{F}(n, r, m)$ be tuples not in $\mathfrak{X}(n, r, m)$, where the corresponding hypergraph \mathcal{H} has $(r-1) m$ nodes. One can show that such an \mathcal{H} is a union of vertex-disjoint loose cycles.

Theorem 1.2c Proof Idea (cont.)

- Isomorphism classes of \mathcal{H} can be encoded by a vector \mathbf{k} where i-th component $=$ no. of loose cycles of length i, where $\mathcal{H}_{\mathbf{k}}^{(r)}$ is the hypergraph formed by k_{i} copies of the loose cycle $C_{i}^{(r)}$
- Claim 4.3: Show that the contribution $\Delta\left(R_{1}, \ldots, R_{m}\right)$ for each tuple is the same, and obtain an explicit expression for the contribution.
- Claim 4.4: Count the no. of tuples in the isomorphism classes of \mathcal{H}.

Theorem 1.2c Proof Idea (cont.)

- Claim 4.5: Express $\mathbb{E}\left[\left(X_{n, r}-\binom{n}{r} t_{r}\right)^{m}\right]$ as a formal power series $f(x)$, and use results from previous claims to compute coefficients.
- Claim 4.6: Show that the MGF of Y is equal to $f(x)$ within a neighborhood of zero. (This verifies that the MGF of Y is finite in this neighborhood, so the distribution of Y is determined by its moments.)

