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Hladký et al. (2021) prove a limit theorem of the number of r-cliques in W -
random graphs, which are an inhomogeneous variant of the Erdős-Rényi ran-
dom graph. In this report, we discuss some of the relevant background in
graphon theory required to understand Hladký et al’s results, and provide a
high-level overview of their main results.

Introduction to Graphons

Definition 1. A graphon is a bounded, symmetric and measurable function

W : [0,1]2→ [0,1], W (x,y) = W (y,x) ∀ x,y ∈ [0,1]

LetW0 denote the space of all graphons.

Intuitively, we may think of graphons as weighted symmetric graphs with un-
countably many vertices, where the vertex set is [0,1] and the weights are the
values W (x,y) = W (y,x).

Note that for any graph G = (V ,E), the associated empirical graphon WG ∈W0
if we ∈ [0,1] for all e ∈ E.

Inhomogeneous Random Graphs

Given a graphon W , we generate the random graph G(n,W ) as follows:

1. Sample independently n numbers U1, . . . ,Un ∼Unif(0,1). Call these num-
bers types (continuous analog of node colorings).

2. Identify each uniform random variable Uj with a node j ∈ [1..n], i.e. as-
sign each node a type.
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3. Connect any two nodes i, j in G(n,W ) with an edge (i, j) with probability
W (Ui ,Uj )

Call such a random graph a W -random graph.

From this construction, note that if the graphon W is constant, i.e. W (x,y) ≡
p ∈ [0,1], then G(n,W ) is identical to the Erdös–Rényi random graph G(n,p).

Definition 2. For a graphon W , the degree function degW : [0,1] → [0,1] is
defined as:

degW (x) =
∫ 1

0
W (x,y)dy

The degree function allows us to examine how the degree of a node varies as
its type changes.

Recall that in an Erdos–Rényi random graph G(n,p), a node has expected de-
gree (n−1)·p. In G(n,W ), if a node has type x ∈ [0,1], then its expected degree is
(n−1) ·degW (x). Thus, we see that the degree function of a graphon generalizes
the notion of the degree of a node for graphons.

Graph Homomorphisms and Homomorphism Density

Definition 3. Let F = (V ′ ,E′) and G = (V ,E) be graphs. A graph homomorphism
from F to G is a map

β : V ′→ V such that if (i, j) ∈ E′ , then (β(i),β(j)) ∈ E.

Write F→ G if there exists a homomorphism from F to G.

A graph homomorphism F→ F that is bijective is called a graph automorphism.

The intuition for graph homomorphisms is that it is a map F → G where the
images of adjacent vertices remain adjacent. In particular, a homomorphism
Kr → G indicates that G contains an r-clique.

Now, note that given any F and G, there may exist many possible homomor-
phisms F→ G. This motivates the notion of homomorphism densities.

Definition 4. For a weighted graph G = (V ,E) on n nodes with adjacency matrix
A, and a graph F = (V ′ ,E′) on k nodes, the homomorphism density of F in G is
defined as:

t(F,G) =
1
nk

∑
β:V ′→V

graph hom.

 ∏
(i,j)∈E′

[A]β(i),β(j)


where [A]β(i),β(j) denotes the (β(i),β(j))-th entry of A.

Homomorphism densities are a relative measure of the number of ways in
which F can be mapped into G in an adjacency-preserving manner. In par-
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ticular, in the definition above, we weight each homomorphism β : V ′ → V by
the product of edge weights in the image of β. (For an unweighted graph, we
simply set all edge weights equal to 1.)

We may now define an analogous notion of homomorphism density for graphons.

Definition 5 (Equation 6, Hladký et al. 2021). For a graphon W ∈ W0 and a
multigraph H = (V ,E) on n nodes, the homomorphism density of H in W is:

t(H,W ) =
∫

[0,1]n

∏
(i,j)∈E

W (xi ,xj )
∏
i∈V

dxi

For a clique Kr , the homomorphism density can be defined as:

t(Kr ,W ) = E
∏

(i,j)∈E
W (Ui ,Uj )

Observe that this definition is similar to the definition of homomorphism den-
sity for weighted graphs, where W (xi ,xj ) is the weight of the edge (i, j).

The quantity Xn(H,W )

Now, note that if H is a simple graph with k vertices, then the homomorphism
density t(H,W ) ∈ [0,1] is the probability that the W -random graph G(n,W )
contains a subgraph that is isomorphic to H .

Let Xn(H,W ) denote the no. of subgraphs of G(n,W ) that are isomorphic to
H . To obtain the expectation of Xn(H,W ), we first take the probability t(H,W )
that a copy of H is in G(N,W ). Then, we multiply this quantity by the no. of

size-k subgraphs H of G(n,W ). This quantity is given by
n!

(n−k)!
aut(H) , where aut(H)

denotes the no. of graph automorphisms of H .

Note that (n)k := n!
(n−k)! is the no. of ways we can permute k out of n objects, and

to avoid double-counting possible permutations of vertices within H , we need
to divide by aut(H). Thus, we have that:

E[Xn(H,W )] =
(n)k

aut(H)
· t(H,W )

Conditional homomorphism densities, Kr-regular graphons

Definition 6 (Equation 7, Hladký et al. 2021). For an integer l ≤ k, let J be an
l-element subset of [k] = {1,2, . . . , k}.
Let H be a graph with vertex set [k] where nodes in J are considered to be marked.
Then, given a vector of values x = (xj )j∈J ∈ [0,1]l , define the conditional homomor-
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phism density tx(H,W ) as follows:

tx(H,W ) = E

 ∏
{i,j}∈E(H)

W (Ui ,Uj )

∣∣∣∣∣∣∣∣ Uj = xj : j ∈ J


If H is a simple graph containing r nodes, then tx(H,W ) is the conditional
probability that the W -random graph G(r,W ) = H whenever node j is assigned
type xj (where j ∈ J).

Note that if H = Kr is an r-clique, then tx(Kr ,W ) depends only on the cardinal-
ity of J and not the elements of J (i.e. the marked nodes).

Recall that tx(Kr ,W ) depends only on the no. of marked nodes in G(Kr ,W ).
Then, let K•r and K••r denote Kr with one and two marked nodes respectively,
with corresponding conditional homomorphism densities tx(K•r ,W ) and tx,y(K••r ,W ).
This motivates the following definitions:

Definition 7. A graphon W is Kr-free if t(Kr ,W ) = 0.
A graphon W is Kr-complete if t(Kr ,W ) = 1 almost everywhere.

Definition 8. A graphon W is Kr-regular if for almost every x ∈ [0,1], we have:

tx(K•r ,W ) = t(Kr ,W )

We first observe that for r = 2, we have tx(K•2 ,W ) = t(K2,W ) =
∫ 1

0 W (x,y)dy =
degW (x) (by definition of the degree function of a graphon). This indicates that
K2-regularity coincides with the definition of regularity for a graphon.

Now, note that for r ≥ 3, Kr-regularity indicates that in G(n,W ), any node (re-
gardless of its type) is expected to belong to the same no. of r-cliques.

Moreover, it can be shown that if a graphon W is not Kr-regular, then two
copies of Kr in G(n,W ) that share one vertex are positively correlated, result-
ing in greater variance in the no. of copies of Kr . This implies that if W is
indeed Kr-regular, then any two copies of Kr that share exactly one vertex are
uncorrelated. That is, the probability of one copy’s existence is unrelated to
the probability of the other copies’ existence.

Spectrum of a graphon, the graphon V
(r)
W

Prior to stating the results obtained by Hladký et al., we first recall some pre-
liminaries regarding the spectral property of graphons.

We first note that L2[0,1] is a real Hilbert space consisting of functions f :
[0,1]→ R where

∫ 1
0 |f (x)|2 dx <∞.

Now, for a graphon W : [0,1]2 → [0,1], there is an associated integral linear
operator TW : L2[0,1]→ L2[0,1], where (TW f )(x) =

∫ 1
0 W (x,y)f (y)dy.
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One can verify that the operator TW is a Hilbert-Schmidt operator and that
there are countably many non-zero real eigenvalues associated with W . Let
Spec(W ) denote the multiset of such eigenvalues. Now, it can be shown that:∑

λ∈Spec(W )

λ2 =
∫

[0,1]2
W (x,y)2 dxdy ≤ 1 (1)

This fact is used in Hladký et al.’s proof when they discuss conditions pertain-
ing to a normal limit distribution.

Moreover, it can be shown that if W is a regular graphon, i.e. degW (x) ≡ d for
some constant d, then W has an eigenfunction f ≡ 1 with associated eigen-
value d. Then, let Spec−(W ) be the multiset of eigenvalues of W , where the
multiplicity of the eigenvalue d is decreased by 1.

Now, to encode information regarding local clique densities in G(n,W ), Hladký

et al. construct an auxiliary graphon V
(r)
W . For a graphon W and r ≥ 2, a

graphon V
(r)
W : [0,1]2→ [0,1] is defined where:

V
(r)
W (x,y) := tx,y(K••r ,W )

That is, V (r)
W (x,y) is the homomorphism density of r-cliques Kr in G(n,W ) that

contain two nodes with types x and y. We note that V (2)
W = W .

One can show that W is a Kr-regular graphon if and only if V
(r)
W is a regular

graphon. By computing the degree function of V (r)
W explicitly, we see that:

deg
V

(r)
W

(x) =
∫ 1

0
V

(r)
W (x,y)dy

=
∫ 1

0
tx,y(K••r ,W )dy (by definition of V (r)

W )

= tx(K•r ,W )

= t(Kr ,W ) (by Kr-regularity of W )

= tr

Since tr is a constant, it follows that V (r)
W is a regular graphon with degree tr .

Then, f ≡ 1 is an eigenfunction of V (r)
W with eigenvalue tr , and Spec−(V (r)

W ) is

the eigenvalue spectrum of V (r)
W where the multiplicity of tr is decreased by 1.

Statement of Hladký et al.’s results (Theorem 1.2)

Theorem (Theorem 1.2b, Hladký et al. (2021)). Let W be a graphon. Fix r ≥ 2
and let tr = t(Kr ,W ). Let Xn,r denote the no. of r-cliques in G(n,W ). Then:
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(a) If W is Kr-free or complete, then almost surely Xn,r = 0 or Xn,r =
(n
r

)
respec-

tively.

(b) If W is not Kr-regular, then:

Xn,r −
(n
r

)
tr

nr−1/2
d−→ σ̂r,W ·Z

where Z ∼N (0,1) and σ̂r,W = 1
(r−1)!

(
t(Kr ⊖Kr ,W )− t2

r

)1/2
> 0.

(c) Suppose W is a Kr-regular graphon that is neither Kr-free nor complete. Re-
call that Xn denotes the no. of r-cliques in G(n,W ). Now, let r ≥ 2 and set
tr = t(Kr ,W ). Then:

Xn −
(n
r

)
tr

nr−1
d−→ σr,W ·Z +

1
2(r − 2)!

∑
λ∈Spec−(V (r)

W )

λ · (Z2
λ − 1)

where Z and (Zλ)
λ∈Spec−(V (r)

W )
are independent standard normal.

The statement of part (b) is analogous to the following statement, which is akin
to the statement of the Central Limit Theorem:

Xn,r −E[Xn,r ]√
Var[Xn,r ]

d−→ Z

Now, recall that a chi-square distribution with k degrees of freedom of the
distribution of the sum of squares of k independent standard normal random

variables, i.e. if we have Q =
∑k

i=1Z
2
i where Zi

i.i.d∼ N (0,1), then Q ∼ χ2(k).

Then, since V
(r)
W has countably many eigenvalues λ and the independent stan-

dard normal variables Zλ are indexed over λ ∈ Spec−(V (r)
W ), we may view the

result of part (c) as a weighted analog of a chi-square distribution with count-
ably infinite terms.

Hladký et al. show that the limit distribution in part (c) is normal if and only if

V
(r)
W is regular. To see the forward direction, note that if the limit distribution

in part (c) is normal, then Spec−(V (r)
W ) is the empty set, i.e. Spec(V (r)

W ) = {tr }.
Since W is assumed to be Kr-regular in part (c), we have that V

(r)
W is regular

with constant degree function deg
V

(r)
W
≡ tr .
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Now, note that:

t2
r =

(∫ 1

0
deg

V
(r)
W

(y)dy
)2

=
(∫

[0,1]2
V

(r)
W (x,y)dxdy

)2

(by definition of the degree function)

≤
∫

[0,1]2

(
V

(r)
W (x,y)

)2
dxdy

(Applying Jensen’s Inequality, since the quadratic function is convex)

=
∑

λ∈Spec(VW
(r))

λ2 (By equation (1))

= t2
r

Note that equality in the above inequality is attained if and only if V (r)
W is con-

stant, i.e. V (r)
W ≡ tr .

The question regarding which graphons W lead to a constant graphon V
(r)
W

remains an open problem. Hladký et al. postulate that for r ≥ 3, for V
(r)
W

to be constant, W must be a constant Kr-regular graphon. That is, among
random graphs of the form G(n,W ) where W is Kr-regular, only Erdös-Rényi
random graphs G(n,p) for p ∈ (0,1) that correspond to constant W ≡ p have an
asymptotically normal number of r-cliques.

Hladký et al. also discuss conditions where the normal term is absent in part (c)
of the theorem above. Namely, this condition occcurs if and only if W (x,y) = 1
for almost every (x,y) ∈ [0,1]2 for which tx,y(K••r ,W ) > 0. That is, the distri-
bution in part (c) is normal-free when the graphon W attains a value of 1 for
almost all (x,y) where the homomorphism density of an r-clique containing
types x,y is non-zero.

Numerical Simulations

We perform some numerical simulations that verify Hladký et al.’s results.

We first consider the graphon W (x,y) = xy and we consider the W -random
graph G(n,W ) for n = 100. To construct this graph, we sample types U1, . . . ,U50
independently from the uniform distribution on [0,1] and connect nodes i, j ∈
{1, . . . ,50} by an edge with probability W (Ui ,Uj ). We set r = 3 to be the size of
cliques whose we are interested in. Next, we record the no. of 3-cliques X100,3
in the resultant random graph, and repeat this process for 1000 iterations.

In the histogram below, we plot the distribution of Xn,r−E[Xn,r ]
nr−1/2 = X100,3−E[X100,3]

1003−1/2 ,
in accordance with the hypothesis of Theorem 1.2b.
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Figure: Distribution of X100,3−E[X100,3]
1003−1/2 for G(3,W ) where W (x,y) = xy

We observe that the distribution resembles the shape of a scaled standard
Gaussian, as stated in Theorem 1.2b.

We then consider an example of a K3-regular graphon where the distribution
in Theorem 1.2c is not Gaussian (discussed on pg.9-10 of Hladký et al.). We set
r = 3, and subdivide [0, 1] into 6 equally-sized subintervals. We place a copy
of the complete 3-partite graphon on the first 3 subintervals, and another copy
on the last 3 subintervals. We also connect the first and fourth subinterval with
an arbitrary value. That is, we obtain a graphon W where:

W (x,y) =


1 if x,y ∈ [0,1/2] where x , y or x,y ∈ [1/2,1] where x , y

0.5 if x ∈ [0,1/6] and y ∈ [3/6,4/6] or vice versa
0 otherwise

(Here 0.5 was arbitrarily chosen as the value between the first and fourth
subinterval)

An illustration of this graphon is included below:
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Figure: K3-regular graphon discussed on pg. 9 of Hladký et al
(Image courtesy of Anirban Chatterjee)

According to Hladký et al, this graphon is K3-regular but has σr,W = 0. Repeat-
ing the aforementioned simulation process with n = 100 for 1000 iterations,
we note that the distribution of Xn,r is non-Gaussian:

Figure: Distribution of X100,3−E[X100,3]
1003−1/2 for G(3,W ) for the aforementioned

K3-regular graphon W
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The Python code used to generate the above simulations is included below for
reference:� �
# Import relevant Python packages
import numpy as np
import networkx as nx
from collections import defaultdict
import matplotlib.pyplot as plt

def simulate_graphon(n, r, num_iterations = 1000, W,
graphon_name):
"""
Plots the distribution of clique counts for a graphon

Parameters:
n (int): No. of nodes in the W-random graph
r (int): Size of clique
num_iterations (int): No. of iterations for simulation (by

default 1000)
W (function): Graphon function
graphon_name (string): Name of graphon (for saving resulting

plot)
"""

# Instantiate a dictionary that maps the no. of r-cliques to
their frequency

clique_counts = defaultdict(int)

for i in range(num_iterations):
# Compute n uniform random variables U_1, ..., U_n
U = np.random.uniform(low=0, high=1, size=n)

# Create probability matrix where entry (i, j) = W(U_i, U_j)
prob_matrix = np.array(

[np.array([W(U[i], U[j]) for j in range(n)]) for i in
range(n)]

)

# Populate lower diagonal entries of adjacency matrix
according to edge probabilties

adj = np.zeros((n, n))

for i in range(n):
for j in range(i):
# Create an edge (i, j) with probability W(U_i, U_j)
adj[i, j] = np.random.binomial(1, prob_matrix[i, j])
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# Make adjacency matrix symmetric
adj = np.tril(adj) + np.tril(adj, 1).T

G = nx.from_numpy_matrix(adj)

# Compute no. of cliques of size r
num_r_cliques = len([clique for clique in nx.find_cliques(G)

if len(clique) == r])

clique_counts[num_r_cliques] += 1

# Compute frequencies
clique_frequencies = np.array(list(clique_counts.values())) /

num_iterations

mean_clique_count = np.mean(list(clique_counts.keys()))

transformed_clique_count = (list(clique_counts.keys()) -
mean_clique_count) / (n ** (r - 1))

transformed_clique_count = np.array(transformed_clique_count)

plt.bar(transformed_clique_count, clique_frequencies, color=’g’
, width=0.0005)

# Display x-axis labels using scientific notation
plt.ticklabel_format(style=’sci’, axis=’x’, scilimits=(0,0))
plt.title(f"Distribution of No. of {r}-cliques (Scaled and

Centred) for {graphon_name}")
plt.xlabel(f"No. of {r}-cliques (Scaled and Centered)")

ax = plt.gca()

plt.xlim(-1*1e-2, 1*1e-2)
plt.ylabel("Density")

plt.savefig(f"{graphon_name}, n = {n}, r = {r}, {num_iterations
} iterations.png", bbox_inches=’tight’, dpi=144)� �
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Proof Idea of Theorem 1.2b

The proof of Theorem 1.2b uses a construction called dependency graphs. Given
a collection of random variables (Yi : i ∈ I) for some index set I , we create a
dependency graph G with vertex set I .

Now, for each vertex i ∈ I , let Ni denote the neighborhood of i ∈ G. We con-
struct G such that for all i ∈ I , the random variable Yi is independent of {Yj }j<Ni

.

Note that the dependency graph need not be unique for a given collection of
random variables (Yi)i∈I .

Hladký et al. also use the following off-the-shelf bound for the Wasserstein
distance between two random variables, which may be viewed as a distance
function between probability distributions.

Theorem (Theorem 2.2, Hladký et al. 2021). Let (Yi : i ∈ I) be a finite col-
lection of random variables where ∀ i ∈ I,E[Yi] = 0 and E[Y 4

i ] < ∞. Let σ2 =
Var[

∑
i∈I Yi] and Q =

∑
i∈I

Yi
σ . Let G be a dependency graph for (Yi : i ∈ I), and let

D = maxi∈I |Ni |. Then, we have that:

dWass(Q,Z) ≤ D2

σ3

∑
i

E[|Yi |3] +

√
28D3/2
√
πσ2

√∑
i

E[Y 4
i ]

Hladký et al. apply the above bound to a collection of random variables (YR :
R ∈

([n]
r

)
). Here,

([n]
r

)
is the set of all size-r subsets of [n], so the random variables

YR are indexed by size-r subsets R ⊆ [n].

Let Ir be the indicator random variable for the event where R induces a clique
in G(n,W ). Then, let YR := IR −E[IR] = IR − tr . Note that we have E[YR] = 0 as
required in the theorem above.

Then, we have Xn,r −
(n
r

)
tr =

∑
R∈([n]

r ) IR − tr =
∑

R∈([n]
r )YR.

We then construct the dependency graph G, where edges correspond to non-
disjoint Ri ,Rj , i.e. Ri ∩Rj , ∅. In G, each neighbourhood NR has the same size
D, given by:

D =
r∑

l=1

(
r
l

)(
n− r
r − l

)
= O(nr−1)

The summation on the left hand side sums over all possible ways to generate a
neighborhood NR of size r, by iterating over l = {1, . . . , r}.

Then, the authors enumerate the no. of ordered pairs R1,R2 whose intersection
has cardinality l for each l ∈ [r], which they compute to be:(

n
l

)(
n− l
r − l

)(
n− r
r − l

)
= O(n2r−l)
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Using this information, it can be shown that σ2
n ≈ σ̂2

r,W ·n
2r−1.

Then, the authors define Qn :=
∑

R∈([n]
r )

YR
σn

. Applying Theorem 2.2 where we

bound
(n
r

)
≤ nr and examine powers of n, one can show that dWass(Qn,Z) =

O(n−1/2)→ 0, i.e. Qn
d−→ Z. Next, applying Slutsky’s Theorem, we have that:∑

R∈([n]
r )YR

nr−1/2
=

σn
nr−1/2

·Qn
d−→ σ̂r,WZ

Since
∑

R∈([n]
r )YR = Xn,r −

(n
r

)
tr , this completes the proof.

Proof Idea of Theorem 1.2c

The proof for Theorem 1.2c uses the method of moments to establish distribu-

tional convergence of
Xn,r−(nr)tr

nr−1 .

Recalling that IR be an indicator for the event that a size-r subset of vertices R
induces a clique in G(n,W ), we have that:

Xn,r −
(
n
r

)
tr =

∑
R∈([n]

r )

IR − tr

Now, the authors analyse the structure of tuples (R1, . . . ,Rm) where each Ri is
a subset of vertices of G(n,W ). Defining ∆(R1, . . . ,Rm) := E

[∏m
i=1(IRi

− tr )
]
, we

have that:

E
[(
Xn,r −

(
n
r

)
tr

)m]
=

∑
(R1,...,Rm) ∈ ([n]

r )
m

∆(R1, . . . ,Rm)

The above equation indicates that for each m, we can analyze the m-th mo-
ments of Xn,r −

(n
r

)
tr by examining the sum of the contributions ∆(R1, . . .Rm) of

m-tuples (R1, . . . ,Rm).

The authors first define X(n,r,m), which is a family of m-tuples where there
exists some i ∈ [m] such that |Ri ∩

(
∪j,iRj

)
| ≤ 1, we have that E

[∏m
i=1(IRi

− tr )
]

=
0. Recalling that Xn,r −

(n
r

)
tr =

∑
R∈([n]

r ) IR − tr , the above result shows that m-

tuples in X(n,r,m) do not contribute to the computation of the moments of
Xn,r −

(n
r

)
tr . The authors thus consider m-tuples not in X(n,r,m).

Letting F (n,r,m) denoting this complementary family of m-tuples, the authors
show that hypergraphs H corresponding to such tuples have (r − 1)m nodes
and are a union of vertex-disjoint loose cycles. Isomorphism classes of H can
be encoded by a vector k whose i-th component is given by the no. of loose
cycles of length i.
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In Claim 4.3, the authors show that for each tuple in the aforementioned iso-
morphism classes, their contribution ∆(R1, . . . ,Rm) is the same, and they obtain
an explicit expression for the contribution. The authors proceed to count the
no. of tuples in the isomorphism classes of H in Claim 4.4.

Using this information, the authors are able to express E[(Xn,r −
(n
r

)
tr )m] as a

formal power series f (x) (Claim 4.5) and compute coefficients explicitly.

Then, the authors define a random variable Y equal to the right hand side of
Theorem 1.2c, where:

Y := σr,W ·Z +
1

2(r − 2)!

∑
λ∈Spec−(V (r)

W )

λ · (Z2
λ − 1)

In Claim 4.6, the authors consider the moment generating function MY (t) =
E[etY ] and show that My(x) = f (x) in a neighborhood of zero. Since the MGF
of Y is finite and exists in this neighborhood, and recalling that the MGF
of Y uniquely determines its distribution, we are thus able to conclude that
Xn−(nr)tr

nr−1
d−→ Y as desired.

Extensions and Concluding Remarks

Bhattacharya, Chatterjee & Janson (2022) extended Hladký et al’s results for
general subgraphs H in W -random graphs, and they introduce an analogous
notion of H-regular graphons. Specifically, they found that if W is not H-
regular, then the distribution of Xn(H,W ) is asymptotically Gaussian. More-
over, if W is H-regular, then the limiting distribution of Xn(H,W ) consists of a
Gaussian term and a Chi-squared term.

Moreover, Kaur & Röllin (2021) provide a central limit theorem for centred sub-
graph counts in W -random graphs, and they demonstrate their distributional
convergence to Gaussian distributions. They also developed test statistics for
determining the presence of certain subgraphs, for example two edges sharing
a common vertex.

There are also numerous open problems within this area. One such problem is
to extend Hladký et al’s results to sparse W -random graphs. Namely, to find
the no. of cliques & other subgraphs in sparse G(n,p ·W ) where p = p(n)→ 0 as
n→∞. Another open area is to examine the variance of the no. of hyperedges
of a certain size in W -random hypergraphs.
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