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CrowdStrike Outage (July 2024)
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(Images from BBC & Bloomberg)



- CrowdStrike Root Cause Analysis Report (Aug 2024)

“The sensor expected 20 input fields, while the 
update provided 21 input fields … the mismatch 
resulted in an out-of-bounds memory read, 
causing a system crash.”
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HotOS ’05  
(from the creators of seL4)

4



5

Formally verified OSes, a history
PSOS (Stanford), 1973 1980
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Formally verified OSes, a history
PSOS (Stanford), 1973 1980

• Theorem provers still in their infancy

• (limited support for pointers!)


• Mostly focused on formalizing OS design, 
but didn’t prove implementations correct

PSOS Revisited  
(Neumann & Feiertag, 2003)
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Implementing OSes using type-safe languages, a history 
(this was before Rust!)
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Implementing OSes using type-safe languages, a history 
(this was before Rust!)

EuroSys 2006

Used a variant of C# with 
Rust-like ownership types 

SOSP 1995

Modula-3 compiler enforces 
module boundaries

seL4 authors: 

• Their language runtimes 

are “substantially bigger” 
than the seL4 kernel 


• Type safety is not strong 
enough! 



- seL4: Formal Verification of an OS Kernel (SOSP ’09)

“Complete formal verification is the 
only known way to guarantee that a 
system is free of programming errors”
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- seL4: Formal Verification of an OS Kernel (SOSP ’09)

“Complete formal verification is the 
only known way to guarantee that a 
system is free of programming errors”
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seL4 is the first formally verified OS kernel implementation
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SOSP Best Paper (2009) 
CACM Research Highlight (2010) 
ACM SIGOPS Hall of Fame (2019)  
ACM Software System Award (2022) 
…

seL4 Awards
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seL4’s Impact

(From Gernot Heiner’s EuroSys ’25 keynote)
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seL4’s Impact

Various DARPA-funded projects

(From Gernot Heiner’s EuroSys ’25 keynote)
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Formal Verification in seL4
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seL4 is a Microkernel

Monolithic kernel seL4 Microkernel
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seL4 is a Microkernel

Monolithic kernel seL4 Microkernel

• Small codebase (more amenable to verification)

• No application-oriented services 

• BYO file system, memory manager, device drivers, …
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HotOS ’05  
(From the team behind the Xen hypervisor)

• VMs work with legacy 
systems, microkernels don’t! 

• Microkernels suffer from 
liability inversion, VMs don’t!

Aside: Are VMs Microkernels Done Right?
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HotOS ’05  
(From the team behind the Xen hypervisor)

HotOS ’06 
(From the team behind the L4 microkernel)

• Microkernels also work 
with legacy systems! 

• VMs also suffer from 
liability inversion!

• VMs work with legacy 
systems, microkernels don’t! 

• Microkernels suffer from 
liability inversion, VMs don’t!

Aside: Are VMs Microkernels Done Right?
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The seL4 development process
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The seL4 development process

• Haskell prototype linked w/ a hardware simulator

• Haskell executable spec is automatically 

translated to the Isabelle theorem prover

• Model re-implemented manually in C for 

optimization purposes


• NB: final proofs are about the C implementation, 
not the (intermediate) Haskell prototype


• C compiler & hardware are trusted (assumed to be 
correct)



Aside: What can be trusted?
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From Ken Thompson’s (of Unix fame)  
1984 Turing Award Lecture 

“You can't trust code that you did 
not totally create yourself […] No amount 
of source-level verification or scrutiny will 
protect you from using untrusted code.” 
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The subset of C used in seL4
   Everything from the C99 standard  
+ GCC assumptions on data layout, endianness etc.
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The subset of C used in seL4
   Everything from the C99 standard  
+ GCC assumptions on data layout, endianness etc.

except: 
• goto, switch statements w/ fall-through cases 
• & (address-of) operator on local variables 

• Local variables assumed to be separate from the heap  
• Side-effects in expressions  

• (by virtue of the fact that the C code is translated from Haskell) 
• Function pointers, untagged unions
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What do they prove?

Functional correctness via refinement: 

i.e. all behaviors of the C implementation 
are captured by the abstract spec 

(“Behaviors” are properties specified in Hoare logic)
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Hoare Logic, briefly

{ P } c { Q } 

• If command c begins execution in a state satisfying precondition P 
• and if c terminates in some final state, 
• then the postcondition Q is satisfied
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Representing seL4 using state machines

Types of transitions:


• Kernel transitions: what the kernel does


• User events: kernel entry (trap, faults, 
interrupts)


• Idle transitions: what the idle thread does


• Idle events: interrupts occurring during idle 
time
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Invariants in the seL4 proof
The authors prove 4 types of invariants:

(Icons from The Rust Programming Language book)
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Invariants in the seL4 proof
The authors prove 4 types of invariants:

Memory invariants 
no object is at address 0, 

kernel objects don’t 
overlap in memory

Typing invariants 
references point to objects of 
the right type whose values 

are in a specified range

(seL4-specific) Algorithmic invariants

(e.g. only the idle thread is in state idle, 

and it is always in this state)

Data structure invariants  
(e.g. correct back-links in 

doubly-linked lists)

(Icons from The Rust Programming Language book)
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What their proof implies
The behavior of the C implementation is always defined: 
• All kernel API calls terminate & return to user-level

• i.e. the kernel never enters an infinite loop


• No null pointer dereferences, buffer overflows, memory leaks, etc.

==> the kernel can never crash (as long as our assumptions hold)
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What their proof implies
The behavior of the C implementation is always defined: 
• All kernel API calls terminate & return to user-level

• i.e. the kernel never enters an infinite loop


• No null pointer dereferences, buffer overflows, memory leaks, etc.

What their proof doesn’t imply
• The spec describes the behavior that the end-user expects 

• (the spec could have bugs!)


• seL4 is “secure” 

• (“security” needs to be formally defined, this was done in follow-up work)

==> the kernel can never crash (as long as our assumptions hold)



23

Bugs found + verification effort

(from the SOSP ’09 talk for seL4)



Discussion Questions

• Do you agree with the authors that their development process (implementing 
a prototype in Haskell before subsequently writing an optimized C version) is a 
net cost saver?


• Do you find the seL4 specification reasonable? 


• i.e. expressive enough to prevent bugs, but simple enough for developers


• Is the proof effort reasonable? 


• Is the size of the trusted computing base appropriate? 


• (They assume correctness of the C compiler & underlying hardware)
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seL4’s Design 
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Kernel Objects
seL4 has an “object-oriented” API in 
which users manipulate “objects”:


• Thread Control Blocks 
(representing threads)


• Memory objects (PageDirectory, 
PageTable, Frame) for building 
address spaces


• Endpoint & Notification objects for 
inter-process communication


• Untyped memory (discussed in 
the next slide) 
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Illustrations from Tuna Cici’s slides on seL4: https://github.com/TunaCici/seL4_Architecture



Kernel Memory Management
• Memory is typed: 


• Untyped memory is unused and can be “casted” into other kernel 
objects via the untyped_retype() method, which allocates memory 
for the object


• The rest have specific kernel object types (TCBs etc …)
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untyped_retype()



free()

Kernel Memory Management

• After startup, the kernel never allocates 
memory! 

• At boot-time, the memory required for the 
kernel is pre-allocated (including code/data/
stack sections)


• All remaining memory is untyped and given 
to the initial user thread
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malloc()



Kernel Memory Management
• Kernel objects have to be explicitly created via untyped_retype()  

• Ensures strong resource separation 


• seL4 checks that new objects are wholly contained within regions of 
untyped memory that don’t overlap with other objects


• Eases verification (the memory allocation policy is pushed outside the 
kernel, so we only need to prove the correctness of the memory allocation 
mechanism, not the user-level policy)
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untyped_retype()



Capability-Based Access Control
• A capability is a token that references a specific kernel object and carries access rights (e.g. read/

write) that determine the methods that can be invoked


• Capabilities can be moved & copied (allowing delegation of authority)


• Capabilities live in capability space (CSpace) 


• Each thread has a table mapping addresses in CSpace to kernel objects


• If a thread doesn’t have a capability to an object in its CSpace, it can’t access it
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Illustration taken from the seL4 manual



seL4 System Calls

Only 3 core syscalls! 

• Send(), Receive(): requires capabilities 

• Yield(): invokes scheduler (doesn’t require capability)


• All other syscalls are combinations thereof and invoked via message-passing 
(i.e. calling Send() + Receive() on a capability)
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Inter-Process Communication (IPC)

• IPC between threads is done via 
(capabilities to) an endpoint 

• Endpoint = queue of threads waiting to 
Send() or Receive()  

• A thread can’t be waiting to Send() & 
Receive() at the same time  

• Each thread has a region in its address 
space designated as its “IPC buffer”
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Courtesy of Mark P. Jones, Portland State University
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Performance
“seL4 performance is in the vicinity of the fastest L4 kernels” - §5.1

They measure IPC performance, since in a microkernel, “all interactions occur via IPC”

L4 seL4

Best-case no. of cycles 
consumed in kernel 

mode to deliver a zero 
length message

151 cycles

(Uses a hand-crafted 

assembly fastpath)

224 cycles



Discussion Questions

• Unlike most of the papers we’ve read, there are very few 
performance metrics provided in the seL4 paper. To what 
extent is this a weakness?


• Would reimplementing seL4 in a memory-safe language like 
Rust reduce the verification burden?


• How does seL4 guarantee the correctness of virtual memory 
operations even though the kernel itself runs under virtual 
memory? For example, how do they guarantee that a 
dereference of a pointer in the kernel does not cause a fault?
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Limitations
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Gernot Heiser gave a keynote at ASPLOS / EuroSys ’25 about seL4’s limitations



Limitations of seL4 (after 10+ years)
“While seL4 has been successfully deployed […], it is a 
microkernel that mostly guarantees process isolation 
without providing the application-oriented services 
expected from an OS. This not only makes seL4 difficult 
to deploy, but means that there is limited assurance that a 
system built on top is secure in any real sense.”

— Gernot Heiser’s EuroSys ’25 keynote
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Limitations of seL4 (after 10+ years)
Also from Prof. Heiser’s keynote / the seL4 manual:

- “It’s too hard to build things on seL4 […] you need years 
and years of work”

- seL4’s “arcane build system didn’t help”

- “Much more is needed” re: device drivers, network 
protocol stacks, file systems
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Other (practical) limitations
- seL4 doesn’t load-balance across cores for you 


- you assign threads to cores (or migrate them manually)


- seL4 emphasizes static resource allocation 


- (i.e. if you run out of untyped memory, you can’t create more kernel objects 
until they have been freed)


- Not everything is verified 


- Users need to consult the seL4 manual to see what is trusted / unverified


- e.g. original proofs were for 32-bit ARM & x86, RISC-V proofs are in progress
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Follow-up papers

• Translation validation for a verified OS kernel (PLDI ’13)


• Time protection: The missing OS abstraction (EuroSys ’19)


• seL4: From general purpose to a proof of information flow enforcement 
(IEEE S&P ’13)


• Formally Verified System Initialisation (Formal Methods & Software 
Engineering 2013)
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Thanks!
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