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CrowdStrike Outage (July 2024)
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Recovery

It looks like Windows didn't load correctly

Billions in Damages From CrowdStrike Outage to Go
Uninsured

CrowdStrike IT outage affected 8.5
million Windows devices, Microsoft
B Insured losses estimated between $300 million and $1.5 billion

says -
B The days-long outage took a $5.4 billion toll on Fortune 500

(Images from BBC & Bloomberg)
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“The sensor expected 20 input fields, while the
update provided 21 input fields ... the mismatch
resulted In an out-of-bounds memory read,
causing a system crash.”

- CrowdStrike Root Cause Analysis Report (Aug 2024)



OS Vernfication — Now!

Harvey Tuch Gerwin Klein Gernot Heiser

National ICT Australia
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Formally verified OSes, a history
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Formally verified OSes, a history

PSOS (Stanford), 1973

A PROVABLY SECURE OPERATING SYSTEM

By: P. G. NEUMANN (Principal Investigator)
L. ROBINSON,.K. N. LEVITT,
R. S. BOYER, and A. R. S_AXENA

* Theorem provers still in their infancy

* (limited support for pointers!)

* Mostly focused on formalizing OS design,
but didn’t prove implementations correct

1980

Specification and

Verification of the
UCLA Unixt Security

Kernel

Bruce J. Walker, Richard A. Kemmerer, and

Gerald J. Popek

University of California, Los Angeles

PSOS Revisited
(Neumann & Feiertag, 2003)

Although some simple
illustrative proofs were carried out, it would be a incor-
rect to say that PSOS was a proven secure operating sys-
tem.




Implementing OSes using type-safe languages, a history

(this was before Rust!)
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Implementing OSes using type-safe languages, a history

(this was before Rust!)

Extensibility, Safety and Performance in the Modula-3 compiler enforces
SPIN Operating System module boundaries

Brian N. Bershad  Stefan Savage Przemystaw Pardyak Emin Gun Sirer
Marc E. Fiuczynski David Becker Craig Chambers Susan Eggers

selL4 authors:
* [heir language runtimes

Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195

are “substantially bigger”
than the sel.4 kernel
* [ype safety is not strong

SOSP 1995

Language Support for Fast and Reliable Message-based Used a variant of C# with

Communication in Singularity OS Rust-like ownership types enough!

Manuel Fahndrich, Mark Aiken, Chris Hawblitzel,
Orion Hodson, Galen Hunt, James R. Larus, and Steven Levi

Microsoft Research

EuroSys 2006



“Complete formal verification is the
only known way to guarantee that a
system is free of programming errors”

- seL4: Formal Verification of an OS Kernel (SOSP ’09)



“Complete formal verification is the
only known way to guarantee that a
system is free of programming errors”

- seL4: Formal Verification of an OS Kernel (SOSP ’09)

sel4 is the first formally verified OS kernel implementation
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selL4’s Impact

Used in Real-World Systems

Critical
infrastructure
rotection

Autonomous vehicles

zd-gb

Secure communication device
In use in multiple defense forces

(From Gernot Heiner’s EuroSys ’25 keynote)
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, Architecture-Driven Assurance
S e S m p a c Rockwell Collins, University of Minnesota, Galois, Data61

* Comprehensive use of formal methods throughout the development process is needed
to ensure that vulnerabilities are eliminated from critical military assets.

* Integrated tools for architectural modeling, analysis, and synthesis make this approach

practical and effective. . —=
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Formal Verification in selL4



selL4 is a Microkernel

Monolithic kernel selL4 Microkernel

Syscall User
Mode

NW File

vES Proto- Devi Server
C, File System col Dgwce
20,000 IPC, inat river
kSLOC AN Application ESFI
Scheduler, Virtual Memory Mode
Device Drivers, Dispatcher IPC, Threads, Virtual Memory N\i|pc 10kSLOC

Hardware Hardware
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selL4 is a Microkernel

Monolithic kernel selL4 Microkernel

Syscall User
Mode

NW File

Proto- . Server
Device
col

VFS

20,000 IPC, File System C s Driver

Sl 00 Kernel Application ESFYR%
Scheduler, Virtual Memory Mode
Device Drivers, Dispatcher IPC, Threads, Virtual Memory \|PC 10kSLOC
Hardware Hardware

 Small codebase (more amenable to verification)
 No application-oriented services
* BYO file system, memory manager, device drivers, ...
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Aside: Are VMs Microkernels Done Right?

Are Virtual Machine Monitors Microkernels Done Right?

Steven Hand, Andrew Warfield, Keir Fraser,
Evangelos Kotsovinos, Dan Magenlfteimefr

University of Cambridge Computer Laboratory
T HP Labs, Fort Collins, USA

HotOS 05

(From the team behind the Xen hypervisor)

¢ \/Ms work with legacy
systems, microkernels don't!

¢ Microkernels suffer from
liability inversion, VMs don't!
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Are Virtual Machine Monitors Microkernels Done Right?

Steven Hand, Andrew Warfield, Keir Fraser,
Evangelos Kotsovinos, Dan Magenheimefr

University of Cambridge Computer Laboratory
T HP Labs, Fort Collins, USA

HotOS 05

(From the team behind the Xen hypervisor)

Are Virtual-Machine Monitors Microkernels Done Right?

Gernot Heiser
National ICT Australia* and University of New South Wales
Sydney, Australia
gernot@nicta.com.au

Volkmar Uhlig
IBM T.J. Watson Research Center, Yorktown Heights, NY
vuhlig@us.ibm.com

Joshua LeVasseur
University of Karlsruhe, Germany
jtl@ira.uka.de

HotOS ’06

(From the team behind the L4 microkernel)

¢ \/Ms work with legacy
systems, microkernels don't!

¢ Microkernels suffer from
liability inversion, VMs don't!

e Microkernels also work
with legacy systems!

¢ \/Ms also suffer from
iabllity inversion!

13



The selL4 development process




The selL4 development process

» Haskell prototype linked w/ a hardware simulator | Design Cycle
* Haskell executable spec is automatically w

translated to the Isabelle theorem prover
* Model re-implemented manually in C for / k
D=

optimization purposes
smustor )+ (__protonpe
* NB: final proofs are about the C implementation, *
not the (intermediate) Haskell prototype A @ Manual @ Proof

. Implementation
» C compiler & hardware are trusted (assumed to be
COrreCt) CUser Programs) = High-Performance C Implementation

Formal Executable Spec

15



Aside: What can be trusted?

— n 1 I .
Reflections on Trusting Trust You can't trust code that you did
not totally create yourself [...] No amount
Horses? Perhaps it 15 more. important fo trust the. poople who wyoie The of source-level verification or scrutiny will
software. protect you from using untrusted code.”

From Ken Thompson’s (of Unix fame)
1984 Turing Award Lecture
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The subset of C used Iin selL4

Everything from the C99 standard
+ GCC assumptions on data layout, endianness etc.



The subset of C used Iin selL4

Everything from the C99 standard
+ GCC assumptions on data layout, endianness etc.

except:
e ooto, switch statements w/ fall-through cases

* & (address-of) operator on local variables

e | ocal variables assumed to be separate from the heap
o Side-effects in expressions

e (by virtue of the fact that the C code is translated from Haskell)
® [unction pointers, untagged unions




What do they prove?

Functional correctness via refinement:

..e. all behaviors of the C implementation
are captured by the abstract spec

(“Behaviors” are properties specified in Hoare logic)



Hoare Logic, briefly

{ P}t ci0Q}

* |f command ¢ begins execution in a state satisfying precondition P
* and if ¢ terminates in some final state,
* then the postcondition Q is satisfied

19



Representing sel.4 using state machines

Types of transitions:

 Kernel transitions: what the kernel does ff;’;z'
* User events: kernel entry (trap, faults, LSor evems Idle event
interrupts) User transition Idle transition
» |dle transitions: what the idle thread does Kernel transitions
User Idle
Mode Mode

* [dle events: interrupts occurring during idle
time

20
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Invariants In the sel.4 proof

The authors prove 4 types of invariants:

(lcons from The Rust Programming Language book)
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Invariants In the sel.4 proof

The authors prove 4 types of invariants:

Memory invariants

no object is at address O,
kernel objects don't
overlap in memory

(lcons from The Rust Programming Language book)
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Invariants In the sel.4 proof

The authors prove 4 types of invariants:

Memory invariants Typing invariants

no object is at address 0, references point to objects of
kernel objects don't the right type whose values
overlap in memory are in a specified range

| o

(lcons from The Rust Programming Language book)



Invariants In the sel.4 proof

The authors prove 4 types of invariants:

Memory invariants ing i ' : :
. ry Typing |.nvar|ant.s Data structure invariants
no object is at address 0,  references point to objects of  back.links
kernel objects don't the right type whose values (e.ga Cokr)ﬁeﬁ. ka% I_ '? S 1N
overlap in memory are in a specified range oubly-linked lists)

| |
i AP es D@ c B

21 (lcons from The Rust Programming Language book)



Invariants In the sel.4 proof

The authors prove 4 types of invariants:

Memory invariants ing i ' : :
. ry Typing |.nvar|ant.s Data structure invariants
no object is at address 0,  references point to objects of  back.links
kernel objects don't the right type whose values (e.ga Cokr;ecl_ ka% I_ '? S 1N
overlap in memory are in a specified range oubly-linked lists)

| |
i aABDe@ s Be2@ c B

(selL4-specific) Algorithmic invariants

(e.g. only the idle thread is in state 1d1le,
and it is always in this state)

21 (lcons from The Rust Programming Language book)



What their proof implies

The behavior of the C implementation is always defined:
* All kernel API calls terminate & return to user-level
* |.e. the kernel never enters an infinite loop
* No null pointer dereferences, buffer overflows, memory leaks, etc.

= the kernel can never crash (as long as our assumptions hold)

22



What their proof implies

The behavior of the C implementation is always defined:
* All kernel API calls terminate & return to user-level
* |.e. the kernel never enters an infinite loop
* No null pointer dereferences, buffer overflows, memory leaks, etc.

= the kernel can never crash (as long as our assumptions hold)

What their proof doesn’t imply

* The spec describes the behavior that the end-user expects
e (the spec could have bugs!)
 selL4is “secure”
* (“security” needs to be formally defined, this was done in follow-up work)

22



Bugs found + verification effort

edule(void) {

Switch ((wo:d_:;xsaned%le:Acﬁ;un) { ’ |
Effort
Haskell design 2 py read;
during testing: 16 First C impl. 2 weeks
Debugging/Testing 2 months E
Kernel verification 12 py |
Formal frameworks 10 py
during verification: Total 25 Py
e inC: 160 Cost
e indesign: ~150 Common Criteria EALG6: $87M
L4 .verified: $6M

e inspec: ~150

460 bugs

(from the SOSP ’09 talk for sel.4)
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Discussion Questions

Do you agree with the authors that their development process (implementing

a prototype in Haskell before subsequently writing an optimized C version) is a
net cost saver?

* Do you find the sel 4 specification reasonable?

e |.e. expressive enough to prevent bugs, but simple enough for developers

e |s the proof effort reasonable?

* |s the size of the trusted computing base appropriate?

e (They assume correctness of the C compiler & underlying hardware)

24



selL4’s Design



Kernel Objects

selL4 has an “object-oriented” API in
which users manipulate “objects”:

Kernel Objects

 Thread Control Blocks
(representing threads) UL @
: . sel4_CNode SQLA-_TCBOEJQC{: SQLZ,._EOJPOM{:Ob\ject sel [;._RePlyobject
 Memory objects (PageDirectory,

PageTable, Frame) for building Nr— % OO0
| ]
address spaces 500
. Endeint 8 NOtIfICatIOn ObjeCtS for ssc:::[l:-_/)\%%_—_: sel t_TRQControl Self _NotificationObject ~ Sel 4 _Untyped
Inter-process communication sel4_RISCV_+

* Untyped memory (discussed in
the next slide)

llustrations from Tuna Cici's slides on sel 4: https://github.com/TunaCici/selL4_Architecture
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Kernel Memory Management

« Memory is typed:

 Untyped memory is unused and can be “casted” into other kernel

objects via the untyped_retype( ) method, which allocates memory
for the object

* The rest have specific kernel object types (TCBs etc ...)

000 untyped_retype()

sl 0000000
S€L4_Unt3ped

sel4_TCBObject

27



Kernel Memory Management

o After startup, the kernel never allocates
memory!

e At boot-time, the memory required for the
kernel is pre-allocated (including code/data/

stack sections)

* All remaining memory is untyped and given
to the initial user thread

28



Kernel Memory Management

« Kernel objects have to be explicitly created via untyped retype()

* Ensures strong resource separation

* sel4 checks that new objects are wholly contained within regions of
untyped memory that don’t overlap with other objects

» Eases verification (the memory allocation policy is pushed outside the
kernel, so we only need to prove the correctness of the memory allocation
mechanism, not the user-level policy)

000 untyped_retype()

sl 0000000
sel4_Untyped

sel4_TCBObject

29



Capability-Based Access Control

A capability is a token that references a specific kernel object and carries access rights (e.g. read/
write) that determine the methods that can be invoked

Capabilities can be moved & copied (allowing delegation of authority)
Capabilities live in capability space (CSpace)
Each thread has a table mapping addresses in CSpace to kernel objects

* |f athread doesn’t have a capabillity to an object in its CSpace, it can’t access it

w / Object

Obj reference
30

llustration taken from the sel.4 manual



selL4 System Calls

Only 3 core syscalls!

e Send( ), Receive( ): requires capabilities

e Yield( ): invokes scheduler (doesn’t require capability)

o All other syscalls are combinations thereof and invoked via message-passing
(i.e. calling Send( ) + Receive( ) on a capability)

31



Inter-Process Communication (IPC)

e |PC between threads is done via
(capabillities to) an endpoint

e Endpoint = queue of threads waiting to

Send( ) or Recelve '
() () sender \ / ——
, " endpoint; * recelver;
A thregd can’t be waiting tc? Send() & - P . \
Receive() atthe same time —[€NdPOINE2 — ™ receivers

 Each thread has a region in its address
space designated as its “IPC buffer”

Courtesy of Mark P. Jones, Portland State University
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Performance

“selL4 performance is In the vicinity of the fastest L4 kernels” - §5.1

They measure IPC performance, since in a microkernel, “all interactions occur via IPC”

L4 selL4
(Uses a hand-crafted 224 cycles

mode to deliver a zero

length message assembly fastpath)

33



Discussion Questions

* Unlike most of the papers we’ve read, there are very few
performance metrics provided in the selL4 paper. To what
extent is this a weakness?

* Would reimplementing selL4 in a memory-safe language like
Rust reduce the verification burden®

* How does sel 4 guarantee the correctness of virtual memory
operations even though the kernel itself runs under virtual
memory”? For example, how do they guarantee that a
dereference of a pointer in the kernel does not cause a fault?

34



Limitations



Gernot Heiser gave a keynote at ASPLOS / EuroSys ’25 about selL4’s limitations

11:00 AM CEST = 12:00 PM CEST: ASPLOS + EuroSys 2025 Joint Keynote 2 by Gernot Heiser (Univ. of New South Wales)

Will we ever have truly secure operating systems?

LOCATION: ROTTERDAM HALL 1

Session Chair: Haibo Chen (Shanghai Jiao Tong University)

Abstract

Half a century after PSOS, the first attempts to prove an operating system (OS) secure, OS
faults remain a major threat to computer systems security. A major step forward was the
verification of the seL4 microkernel, the first proof of implementation correctness of anOS
kernel. Over the next 4 years this proof was extended to the binary code, proofs of security
enforcement, and sound and complete worst-case execution-time analysis. The proofs now
cover 4 |SAs.

Yet, 15 years later, there is still no provably secure OS. While seL4 has been successfully
deployed in defence and civilian security- and safety-critical systems, it is a microkernel that
mostly guarantees process isolation without providing the application-oriented services
expected from an OS. This not only makes selL4 difficult to deploy, but means that there is
limited assurance that a system built on top is secure in any real sense.

Why has selL4 not been leveraged into a secure OS? In this talk | will explore some of the
reasons behind this disappointing state of affairs, and what can be done about it. Specifically
I will discuss our current work on LionsOS, a new selL4-based OS targeting the
embedded/cyberphysical domain, and designed to be verifiable. | will also discuss more speculative, early-stage work towards a provably secure,
general-purpose 0S.

36



Limitations of sel.4 (after 10+ years)

“While selL4 has been successfully deployed |...], it is a
microkernel that mostly guarantees process isolation
without providing the application-oriented services
expected from an OS. This not only makes sel4 difficult
to deploy, but means that there Is limited assurance that a
system built on top Is secure In any real sense.”

— Gernot Heiser’s EuroSys ’25 keynote



Limitations of sel.4 (after 10+ years)

Also from Prof. Heiser’s keynote / the seL4 manual:

- “It’s too hard to build things on selL4 |...] you need years
and years of work”

- selL4’s “arcane build system didn’t help”

- “Much more Is needed” re: device drivers, network
protocol stacks, file systems



Other (practical) limitations

- selL4 doesn’t load-balance across cores for you
- you assign threads to cores (or migrate them manually)
- seL4 emphasizes static resource allocation

- (l.e. If you run out of untyped memory, you can’t create more kernel objects
until they have been freed)

- Not everything is verified
- Users need to consult the selL4 manual to see what is trusted / unverified

- e.g. original proofs were for 32-bit ARM & x86, RISC-V proofs are in progress
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Follow-up papers

* Translation validation for a verified OS kernel (PLDI ’13)
* Time protection: The missing OS abstraction (EuroSys ’19)

 selL4: From general purpose to a proof of information flow enforcement
(IEEE S&P ’13)

 Formally Verified System Initialisation (Formal Methods & Software
Engineering 2013)
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Thanks!



