
Presented by Ernest Ng (CS 6410)

Formal Verification
of an OS Kernel
Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch,
Simon Winwood (SOSP ’09)

seL4

(seL4 call graph, Klein et al. TOCS ’10)

CrowdStrike Outage (July 2024)

2

(Images from BBC & Bloomberg)

- CrowdStrike Root Cause Analysis Report (Aug 2024)

“The sensor expected 20 input fields, while the
update provided 21 input fields … the mismatch
resulted in an out-of-bounds memory read,
causing a system crash.”

3

HotOS ’05
(from the creators of seL4)

4

5

Formally verified OSes, a history
PSOS (Stanford), 1973 1980

5

Formally verified OSes, a history
PSOS (Stanford), 1973 1980

• Theorem provers still in their infancy

• (limited support for pointers!)

• Mostly focused on formalizing OS design,
but didn’t prove implementations correct

PSOS Revisited
(Neumann & Feiertag, 2003)

6

Implementing OSes using type-safe languages, a history
(this was before Rust!)

6

Implementing OSes using type-safe languages, a history
(this was before Rust!)

SOSP 1995

Modula-3 compiler enforces
module boundaries

6

Implementing OSes using type-safe languages, a history
(this was before Rust!)

EuroSys 2006

Used a variant of C# with
Rust-like ownership types

SOSP 1995

Modula-3 compiler enforces
module boundaries

6

Implementing OSes using type-safe languages, a history
(this was before Rust!)

EuroSys 2006

Used a variant of C# with
Rust-like ownership types

SOSP 1995

Modula-3 compiler enforces
module boundaries

seL4 authors:

• Their language runtimes

are “substantially bigger”
than the seL4 kernel

• Type safety is not strong
enough!

- seL4: Formal Verification of an OS Kernel (SOSP ’09)

“Complete formal verification is the
only known way to guarantee that a
system is free of programming errors”

7

- seL4: Formal Verification of an OS Kernel (SOSP ’09)

“Complete formal verification is the
only known way to guarantee that a
system is free of programming errors”

7

seL4 is the first formally verified OS kernel implementation

Authors of seL4
Gernot Heiser

Leads the Trustworthy Systems Group (UNSW Sydney)

{Gerwin Klein, June Andronick, Rafal Kolanski}, Proofcraft

Harvey Tuch, Google

Kevin Elphinstone, University of New South Wales

David Cock, ETH Zurich

Philip Derrin, Qualcomm

Dhammika Elkaduwe, University of Peradeniya

{Kai Engelhardt; Toby Murray}, University of Melbourne

Michael Norrish, Australian National University

Thomas Sewell, University of Cambridge

Simon Winwood, Galois

company started by the seL4 proof team

8

https://awards.acm.org/award-recipients/klein_6948888
https://awards.acm.org/award-recipients/andronick_9621399
https://awards.acm.org/award-recipients/kolanski_2260515
https://awards.acm.org/award-recipients/tuch_7068302
https://awards.acm.org/award-recipients/elphinstone_uj96035
https://awards.acm.org/award-recipients/cock_0676755
https://awards.acm.org/award-recipients/derrin_7636969
https://awards.acm.org/award-recipients/elkaduwe_1255988
https://awards.acm.org/award-recipients/engelhardt_2432093
https://awards.acm.org/award-recipients/murray_0082755
https://awards.acm.org/award-recipients/norrish_6978500
https://awards.acm.org/award-recipients/sewell_7666400
https://awards.acm.org/award-recipients/winwood_7401747

SOSP Best Paper (2009)
CACM Research Highlight (2010)
ACM SIGOPS Hall of Fame (2019)
ACM Software System Award (2022)
…

seL4 Awards

9

seL4’s Impact

(From Gernot Heiner’s EuroSys ’25 keynote)

10

seL4’s Impact

Various DARPA-funded projects

(From Gernot Heiner’s EuroSys ’25 keynote)

10

Formal Verification in seL4

11

12

seL4 is a Microkernel

Monolithic kernel seL4 Microkernel

12

seL4 is a Microkernel

Monolithic kernel seL4 Microkernel

• Small codebase (more amenable to verification)

• No application-oriented services

• BYO file system, memory manager, device drivers, …

13

HotOS ’05
(From the team behind the Xen hypervisor)

• VMs work with legacy
systems, microkernels don’t!

• Microkernels suffer from
liability inversion, VMs don’t!

Aside: Are VMs Microkernels Done Right?

13

HotOS ’05
(From the team behind the Xen hypervisor)

HotOS ’06
(From the team behind the L4 microkernel)

• Microkernels also work
with legacy systems!

• VMs also suffer from
liability inversion!

• VMs work with legacy
systems, microkernels don’t!

• Microkernels suffer from
liability inversion, VMs don’t!

Aside: Are VMs Microkernels Done Right?

14

The seL4 development process

15

The seL4 development process

• Haskell prototype linked w/ a hardware simulator

• Haskell executable spec is automatically

translated to the Isabelle theorem prover

• Model re-implemented manually in C for

optimization purposes

• NB: final proofs are about the C implementation,
not the (intermediate) Haskell prototype

• C compiler & hardware are trusted (assumed to be
correct)

Aside: What can be trusted?

16

From Ken Thompson’s (of Unix fame)
1984 Turing Award Lecture

“You can't trust code that you did
not totally create yourself […] No amount
of source-level verification or scrutiny will
protect you from using untrusted code.”

17

The subset of C used in seL4
 Everything from the C99 standard
+ GCC assumptions on data layout, endianness etc.

17

The subset of C used in seL4
 Everything from the C99 standard
+ GCC assumptions on data layout, endianness etc.

except:
• goto, switch statements w/ fall-through cases
• & (address-of) operator on local variables

• Local variables assumed to be separate from the heap
• Side-effects in expressions

• (by virtue of the fact that the C code is translated from Haskell)
• Function pointers, untagged unions

18

What do they prove?

Functional correctness via refinement:

i.e. all behaviors of the C implementation
are captured by the abstract spec

(“Behaviors” are properties specified in Hoare logic)

19

Hoare Logic, briefly

{ P } c { Q }

• If command c begins execution in a state satisfying precondition P
• and if c terminates in some final state,
• then the postcondition Q is satisfied

20

Representing seL4 using state machines

Types of transitions:

• Kernel transitions: what the kernel does

• User events: kernel entry (trap, faults,
interrupts)

• Idle transitions: what the idle thread does

• Idle events: interrupts occurring during idle
time

21

Invariants in the seL4 proof
The authors prove 4 types of invariants:

(Icons from The Rust Programming Language book)

21

Invariants in the seL4 proof
The authors prove 4 types of invariants:

Memory invariants
no object is at address 0,

kernel objects don’t
overlap in memory

(Icons from The Rust Programming Language book)

21

Invariants in the seL4 proof
The authors prove 4 types of invariants:

Memory invariants
no object is at address 0,

kernel objects don’t
overlap in memory

Typing invariants
references point to objects of
the right type whose values

are in a specified range

(Icons from The Rust Programming Language book)

21

Invariants in the seL4 proof
The authors prove 4 types of invariants:

Memory invariants
no object is at address 0,

kernel objects don’t
overlap in memory

Typing invariants
references point to objects of
the right type whose values

are in a specified range

Data structure invariants
(e.g. correct back-links in

doubly-linked lists)

(Icons from The Rust Programming Language book)

21

Invariants in the seL4 proof
The authors prove 4 types of invariants:

Memory invariants
no object is at address 0,

kernel objects don’t
overlap in memory

Typing invariants
references point to objects of
the right type whose values

are in a specified range

(seL4-specific) Algorithmic invariants

(e.g. only the idle thread is in state idle,

and it is always in this state)

Data structure invariants
(e.g. correct back-links in

doubly-linked lists)

(Icons from The Rust Programming Language book)

22

What their proof implies
The behavior of the C implementation is always defined:
• All kernel API calls terminate & return to user-level

• i.e. the kernel never enters an infinite loop

• No null pointer dereferences, buffer overflows, memory leaks, etc.

==> the kernel can never crash (as long as our assumptions hold)

22

What their proof implies
The behavior of the C implementation is always defined:
• All kernel API calls terminate & return to user-level

• i.e. the kernel never enters an infinite loop

• No null pointer dereferences, buffer overflows, memory leaks, etc.

What their proof doesn’t imply
• The spec describes the behavior that the end-user expects

• (the spec could have bugs!)

• seL4 is “secure”

• (“security” needs to be formally defined, this was done in follow-up work)

==> the kernel can never crash (as long as our assumptions hold)

23

Bugs found + verification effort

(from the SOSP ’09 talk for seL4)

Discussion Questions

• Do you agree with the authors that their development process (implementing
a prototype in Haskell before subsequently writing an optimized C version) is a
net cost saver?

• Do you find the seL4 specification reasonable?

• i.e. expressive enough to prevent bugs, but simple enough for developers

• Is the proof effort reasonable?

• Is the size of the trusted computing base appropriate?

• (They assume correctness of the C compiler & underlying hardware)

24

seL4’s Design

25

Kernel Objects
seL4 has an “object-oriented” API in
which users manipulate “objects”:

• Thread Control Blocks
(representing threads)

• Memory objects (PageDirectory,
PageTable, Frame) for building
address spaces

• Endpoint & Notification objects for
inter-process communication

• Untyped memory (discussed in
the next slide)

26

Illustrations from Tuna Cici’s slides on seL4: https://github.com/TunaCici/seL4_Architecture

Kernel Memory Management
• Memory is typed:

• Untyped memory is unused and can be “casted” into other kernel
objects via the untyped_retype() method, which allocates memory
for the object

• The rest have specific kernel object types (TCBs etc …)

27

untyped_retype()

free()

Kernel Memory Management

• After startup, the kernel never allocates
memory!

• At boot-time, the memory required for the
kernel is pre-allocated (including code/data/
stack sections)

• All remaining memory is untyped and given
to the initial user thread

28

malloc()

Kernel Memory Management
• Kernel objects have to be explicitly created via untyped_retype()

• Ensures strong resource separation

• seL4 checks that new objects are wholly contained within regions of
untyped memory that don’t overlap with other objects

• Eases verification (the memory allocation policy is pushed outside the
kernel, so we only need to prove the correctness of the memory allocation
mechanism, not the user-level policy)

29

untyped_retype()

Capability-Based Access Control
• A capability is a token that references a specific kernel object and carries access rights (e.g. read/

write) that determine the methods that can be invoked

• Capabilities can be moved & copied (allowing delegation of authority)

• Capabilities live in capability space (CSpace)

• Each thread has a table mapping addresses in CSpace to kernel objects

• If a thread doesn’t have a capability to an object in its CSpace, it can’t access it

30

Illustration taken from the seL4 manual

seL4 System Calls

Only 3 core syscalls!

• Send(), Receive(): requires capabilities

• Yield(): invokes scheduler (doesn’t require capability)

• All other syscalls are combinations thereof and invoked via message-passing
(i.e. calling Send() + Receive() on a capability)

31

Inter-Process Communication (IPC)

• IPC between threads is done via
(capabilities to) an endpoint

• Endpoint = queue of threads waiting to
Send() or Receive()

• A thread can’t be waiting to Send() &
Receive() at the same time

• Each thread has a region in its address
space designated as its “IPC buffer”

32

Courtesy of Mark P. Jones, Portland State University

33

Performance
“seL4 performance is in the vicinity of the fastest L4 kernels” - §5.1

They measure IPC performance, since in a microkernel, “all interactions occur via IPC”

L4 seL4

Best-case no. of cycles
consumed in kernel

mode to deliver a zero
length message

151 cycles

(Uses a hand-crafted

assembly fastpath)

224 cycles

Discussion Questions

• Unlike most of the papers we’ve read, there are very few
performance metrics provided in the seL4 paper. To what
extent is this a weakness?

• Would reimplementing seL4 in a memory-safe language like
Rust reduce the verification burden?

• How does seL4 guarantee the correctness of virtual memory
operations even though the kernel itself runs under virtual
memory? For example, how do they guarantee that a
dereference of a pointer in the kernel does not cause a fault?

34

Limitations

35

36

Gernot Heiser gave a keynote at ASPLOS / EuroSys ’25 about seL4’s limitations

Limitations of seL4 (after 10+ years)
“While seL4 has been successfully deployed […], it is a
microkernel that mostly guarantees process isolation
without providing the application-oriented services
expected from an OS. This not only makes seL4 difficult
to deploy, but means that there is limited assurance that a
system built on top is secure in any real sense.”

— Gernot Heiser’s EuroSys ’25 keynote

37

Limitations of seL4 (after 10+ years)
Also from Prof. Heiser’s keynote / the seL4 manual:

- “It’s too hard to build things on seL4 […] you need years
and years of work”

- seL4’s “arcane build system didn’t help”

- “Much more is needed” re: device drivers, network
protocol stacks, file systems

38

Other (practical) limitations
- seL4 doesn’t load-balance across cores for you

- you assign threads to cores (or migrate them manually)

- seL4 emphasizes static resource allocation

- (i.e. if you run out of untyped memory, you can’t create more kernel objects
until they have been freed)

- Not everything is verified

- Users need to consult the seL4 manual to see what is trusted / unverified

- e.g. original proofs were for 32-bit ARM & x86, RISC-V proofs are in progress

39

Follow-up papers

• Translation validation for a verified OS kernel (PLDI ’13)

• Time protection: The missing OS abstraction (EuroSys ’19)

• seL4: From general purpose to a proof of information flow enforcement
(IEEE S&P ’13)

• Formally Verified System Initialisation (Formal Methods & Software
Engineering 2013)

40

Thanks!

41

