
Mica: Automated Property-Based Testing for OCaml Modules

ERNEST NG, University of Pennsylvania, USA

1 PROBLEM ANDMOTIVATION
“Modules matter most”, as Harper [2011] once proclaimed. Indeed, OCaml’s module system is
indispensable for enforcing data abstractions and managing the complexity of large software
systems. One key benefit of modularity is that a signature, or interface, can support multiple
implementations, with the signature specifying the interface’s behaviorwhile hiding implementation
details from clients. To check that two modules implementing the same signature behave identically,
one can rely on property-based testing (PBT) tools such as QuickCheck [Claessen and Hughes 2000].

module type SetIntf = sig
type 'a t
val empty : 'a t
val add : 'a -> 'a t -> 'a t
val intersect: 'a t -> 'a t -> 'a t
val size: 'a t -> int
val is_empty : 'a t -> bool
val invariant: 'a t -> bool
...

end

module ListSet : SetIntf = struct
type 'a t = 'a list
(* No duplicates in list *)
let invariant s = ...
...

end

type 'a tree =
Empty | Node of 'a tree * 'a * 'a tree

module BSTSet : SetIntf = struct
type 'a t = 'a tree
(* BST invariant *)
let invariant s = ...
...

end

As a motivating example, consider an OCaml module
signature SetIntf for a finite set data structure.
Suppose there exist two modules ListSet and BSTSet
that both implement this interface using lists and
binary search trees (BSTs) respectively. A natural
question arises: are these two modules observationally
equivalent? That is, given equivalent commands, do
the modules produce equivalent outputs? To test for
observational equivalence, one can generate random
sequences of symbolic commands and execute these
commands over the two modules.
However, defining QuickCheck generators for

this sequence of commands requires significant
programmer effort, as the abstract type ’a t is
instantiated differently in the two modules. Moreover,
due to encapsulation, clients of a module cannot access
the module’s internal implementation – they only have
access to the interface.
To address this issue, we propose Mica, a tool

that examines if two OCaml modules with the same
signature are behaviorally equivalent by automatically
producing PBT code specialized to the interface.

2 BACKGROUND AND RELATEDWORK
PBT was popularised by Haskell’s QuickCheck library [Claessen and Hughes 2000], which allows
users to test executable properties of programs on large numbers of randomly generated inputs. The
notion of model-based testing was introduced to QuickCheck via an extension for testing monadic
code [Claessen and Hughes 2002]. This testing framework examines whether the system under test
is observationally equivalent to an abstract model when executing commands.

This approach was extended in QuviQ’s Erlang QuickCheck library [Hughes 2016], which uses
a finite state machine as the model. This framework was later adopted by the QCSTM OCaml
state-machine testing framework [Midtgaard 2020], which is based on the QCheck PBT library
[Cruanes 2017]. In QCSTM, symbolic commands are represented as algebraic data types (ADTs),
while the testing harness features state-dependent command generators and functions that interpret
commands over the implementation. Our work builds on QCSTM by utilising a similar ADT-based

Author’s address: Ernest Ng, University of Pennsylvania, Philadelphia, Pennsylvania, USA, ngernest@seas.upenn.edu.
ACM member number: 4784536. Entry for ICFP’23 SRC, Graduate Category. Advised by Benjamin C. Pierce.

2 Ernest Ng

representation for symbolic commands, adding support for checking invariants and testing binary
operations on abstract types (e.g. intersect in the finite set example from section 1).

Model_quickcheck [Dumond 2020] is a similarmodel-based PBT framework for testing imperative
OCaml code, based on Jane Street’s Base_quickcheck PBT library [Eastlund 2015]. Each command is
represented as an individual module containing separate functions for executing the command over
the model and the implementation. Our work furthers this approach by providing the capability to
automatically derive functions for interpreting symbolic commands over the two modules.
Articheck [Braibant et al. 2014] is a randomized testing tool for OCaml module signatures.

Articheck uses generalized algebraic data types (GADTs) to represent well-typed sequences of
commands, and relies on fuzzing tools to enumerate inhabitants of abstract types when simulating
function calls. Our work is inspired by this approach in that we also generate type safe sequences
of function calls in the interface, but our tool completely automates this process.
Monolith [Pottier 2021] is a model-based testing framework that uses AFL-based coverage

guidance to examine if two modules are observationally equivalent when executing the same
sequence of commands. In the same vein as Articheck, Monolith provides users with a GADT-based
DSL for declaring functions to be tested across both modules. Our work builds on Monolith’s
approach to testing two modules for observational equivalence. Moreover, our tool automatically
produces the requisite PBT code and obviates the need for users to learn a specialised DSL.
3 APPROACH AND UNIQUENESS
We present Mica, a tool that parses an OCaml module signature containing abstract types, and
automatically derives specialized PBT code which utilises Jane Street’s Core.QuickCheck library
[Madhavapeddy and Minsky 2022]. Suppose a developer takes the 𝑛-th version of a module (known
to be correct) and optimizes the implementation, producing the (𝑛 + 1)-th version. By feeding the
𝑛-th and (𝑛 + 1)-th versions of the module to Mica, any behavioral discrepancies due to erroneous
optimizations can be swiftly identified, with minimal programmer effort required. Additionally,
by feeding two copies of the same module to Mica, one can check if a representation invariant
specified in the signature is upheld.
Specifically,Mica generates definitions for three ADTs: expr, ty, value. Together, these types

represent sequences of calls to the module’s functions. The type expr represents expressions
consisting of symbolic commands, whereas ty and value respectively denote the possible OCaml
types and associated values that exprs can return. Mica also produces a functor ExprToImpl that
takes as input a module M implementing the signature under test, and produces a test harness
containing a function interp that interprets symbolic commands (exprs) over the module M and
produces the corresponding value. Note that the type value is defined in the module that is
returned by the ExprToImpl functor, as it depends on the abstract type M.t.

For example, for the finite set interface SetIntf presented in section 1, the automatically derived
definitions for these datatypes and functions are presented on the following page. Notably, all of
the code displayed in this section is automatically produced byMica, without any programmer
intervention.1

Note that each declaration in the signature SetIntf corresponds to a constructor with the same
name in the expr ADT. Functions of arity 2, for example add x s, are represented using constructors
whose arguments share the same type as the function arguments. The abstract type ’a t in the
module signature corresponds to the constructor T in the type ty, with values of this abstract type
corresponding to the ValT constructor of the value ADT.
Our tool also produces the definition of a QuickCheck generator for exprs (gen_expr), whose

argument ty denotes the return type of the generated command sequence. Successive calls to the
1Implementation: https://github.com/ngernest/module_pbt (repository contains the automatically generated PBT code)

https://github.com/ngernest/module_pbt

Mica: Automated Property-Based Testing for OCaml Modules 3

type expr =
| Empty
| Add of int * expr
| Intersect of expr * expr
| Size of expr
| Is_empty of expr
| Invariant of expr
...

type ty = Bool | Int | T

module ExprToImpl (M : SetIntf) = struct
type value = ValBool of bool | ValInt of int | ValT of int M.t

let rec interp (expr : expr) : value =
match expr with
| Empty -> ValT (M.empty)
| Add (x, e) -> match interp e with

| ValT v -> ValT (M.add x v)
...

| Intersect (e1, e2) -> match (interp e1, interp e2) with
| (ValT e1', ValT e2') -> ValT (M.union e1' e2')
...

end

generator gen_expr produce sequences of symbolic commands that are type safe, e.g. Intersect
(Add 2 Empty) Empty, but not Is_empty (Size Empty). Moreover, since the return type of the
command has to be specified as an argument in each recursive call to gen_expr, the generated
sequences of function calls are guaranteed to be well-typed.

let rec gen_expr (ty : ty) : expr Generator.t =
let%bind k = QC.size in
match ty, k with
| (T, 0) -> return Empty
| (T, _) ->

let intersect =
let%bind e1 =

QC.with_size ~size:(k / 2) (gen_expr T)
and e2 =
QC.with_size ~size:(k / 2) (gen_expr T) in

QC.return @@ Intersect (e1, e2) in
...
QC.union [intersect; ...]

| (Int, _) -> ...

(* Executable code *)
module M1 = ExprToImpl(ListSet)
module M2 = ExprToImpl(BSTSet)

QC.test (gen_expr Int) ~f:(fun e ->
match (M1.interp e, M2.interp e) with
| (ValInt n1, ValInt n2) ->
[%test_eq: int] n1 n2

...)

Lastly, our tool also produces an executable
that invokes the aforementioned PBT code and
tests two modules for observational equivalence.
For example, the code to the right examines
whether the list and BST implementations of the
set interface from section 1 behave identically
when executing randomly generated command
sequences that return int.

4 RESULTS AND CONTRIBUTIONS
As a proof-of-concept, we are currently testing
Mica with three different signatures that each
have two different implementations, namely
finite sets [Sergey 2021; Zdancewic and Weirich
2022], stacks [Alekseyev 2022; Clarkson et al.
2021] and polynomials [Filliâtre 2009; Fletcher
2017]. The executable that is automatically
produced by Mica can detect when the two
modules’ behavior diverge due to a bug in one
implementation.

For example, suppose onemodule implementing
the SetIntf interface erroneously defines is_empty Empty = false, whereas the other module
defines is_empty Empty = true. This discrepancy is identified when the executable is run, printing
an error message containing the expression that evaluates differently. We are currently working on
a empirical evaluation of Mica on different module signatures, and we hope to share our analysis
in the future. Ultimately, we hope that through its capability to automatically derive PBT code for
generic module signatures, Mica can make PBT more accessible to the OCaml community.

Future work. We intend to incorporate ideas from the existing PBT literature to tune our generator
for exprs so that it can be maximally useful. Inspired by techniques from QuviQ QuickCheck
[Hughes 2016] and others, wewould want generated expressions to re-use previously generated data
and preconditions for function calls to be enforced by construction in the generator. For instance,
for the Set example above, we would like to generate exprs where we add and subsequently remove
the same element. We believe that encoding dependencies between successive function calls in our
expr generator is a promising idea that merits further research.

4 Ernest Ng

REFERENCES
Arseniy Alekseyev. 2022. Base: Standard library for OCaml - Stack Module. https://github.com/janestreet/base/blob/master/

src/stack.ml. GitHub repository.
Thomas Braibant, Jonathan Protzenko, and Gabriel Scherer. 2014. ArtiCheck : well-typed generic fuzzing for module

interfaces. In OCaml Workshop. http://gallium.inria.fr/~scherer/doc/articheck-long.pdf
Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for random testing of Haskell programs. In Proceedings

of the Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP ’00), Montreal, Canada, September
18-21, 2000, Martin Odersky and Philip Wadler (Eds.). ACM, Montreal, Canada, 268–279. https://doi.org/10.1145/351240.
351266

Koen Claessen and John Hughes. 2002. Testing Monadic Code with QuickCheck. Proceedings of the 2002 ACM SIGPLAN
Haskell Workshop 37 (06 2002). https://doi.org/10.1145/636517.636527

Michael R. Clarkson, Robert L. Constable, Nate Foster, Michael D. George, Dan Grossman, Daniel P. Huttenlocher, Dexter
Kozen, Greg Morrisett, Andrew C. Myers, Radu Rugina, and Ramin Zabih. 2021. Functional Data Structures. In OCaml
Programming: Correct + Efficient + Beautiful. Cornell University, Chapter 5.6. https://cs3110.github.io/textbook/chapters/
modules/functional_data_structures.html#sets

Simon Cruanes. 2017. QuickCheck Inspired Property-Based Testing for OCaml. https://github.com/c-cube/qcheck/.
Jesse Dumond. 2020. Model_quickcheck: Model-based testing for imperative OCaml code. https://github.com/suttonshire/

model_quickcheck.
Carl Eastlund. 2015. Quickcheck for Core. https://blog.janestreet.com/quickcheck-for-core/.
Jean-Christophe Filliâtre. 2009. Polynomials with coefficients in any ring. https://www.lri.fr/~filliatr/ftp/ocaml/ds/poly.ml.

html.
Shayne Fletcher. 2017. Polynomials over rings. https://blog.shaynefletcher.org/2017/03/polynomials-over-rings.html.
Robert Harper. 2011. Modules Matter Most. https://existentialtype.wordpress.com/2011/04/16/modules-matter-most/
John Hughes. 2016. Experiences with QuickCheck: Testing the Hard Stuff and Staying Sane. Vol. 9600. 169–186. https:

//doi.org/10.1007/978-3-319-30936-1_9
Anil Madhavapeddy and Aaron Minsky. 2022. Property Testing with QuickCheck. In Real World OCaml (2nd ed.). Cambridge

University Press, Cambridge, United Kingdom, Chapter 18.3, 339–343.
Jan Midtgaard. 2020. A Simple State-Machine Framework for Property-Based Testing in OCaml. In OCaml Workshop.

https://janmidtgaard.dk/papers/Midtgaard%3AOCaml20.pdf
François Pottier. 2021. Strong automated testing of OCaml libraries. In Journées Francophones des Langages Applicatifs

(JFLA).
Ilya Sergey. 2021. Representing Sets via Binary Search Trees. https://ilyasergey.net/YSC2229/week-11-bst.html.
Steve Zdancewic and Stephanie Weirich. 2022. Modularity and Abstraction: Finite Sets. CIS 1200 lecture notes, University

of Pennsylvania. https://www.seas.upenn.edu/~cis120/23su/files/120notes.pdf Chapter 10, Section 10.1.

https://github.com/janestreet/base/blob/master/src/stack.ml
https://github.com/janestreet/base/blob/master/src/stack.ml
http://gallium.inria.fr/~scherer/doc/articheck-long.pdf
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/636517.636527
https://cs3110.github.io/textbook/chapters/modules/functional_data_structures.html#sets
https://cs3110.github.io/textbook/chapters/modules/functional_data_structures.html#sets
https://github.com/c-cube/qcheck/
https://github.com/suttonshire/model_quickcheck
https://github.com/suttonshire/model_quickcheck
https://blog.janestreet.com/quickcheck-for-core/
https://www.lri.fr/~filliatr/ftp/ocaml/ds/poly.ml.html
https://www.lri.fr/~filliatr/ftp/ocaml/ds/poly.ml.html
https://blog.shaynefletcher.org/2017/03/polynomials-over-rings.html
https://existentialtype.wordpress.com/2011/04/16/modules-matter-most/
https://doi.org/10.1007/978-3-319-30936-1_9
https://doi.org/10.1007/978-3-319-30936-1_9
https://janmidtgaard.dk/papers/Midtgaard%3AOCaml20.pdf
https://ilyasergey.net/YSC2229/week-11-bst.html
https://www.seas.upenn.edu/~cis120/23su/files/120notes.pdf

	1 Problem and Motivation
	2 Background and Related Work
	3 Approach and Uniqueness
	4 Results and Contributions
	References

