Vlica

Automated Differential Testing
for OCaml| Modules

Ernest Ng
Harry Goldstein

Benjamin Pierce

A module signature for sets

module type S = sig
type 'a t
val empty : 'a t
val 1nsert : 'a = 'at = 'a t

end

module type S
{1, 5, 8, ..}

module type S
{1, 5, 8, ..}

module ListSet : S

[1; 5; 8; ..]

type ‘a t = ‘a list

module type S
{1, 5, 8, ..}

module ListSet : S module BSTSet : S

[1; 5; 8; ..] 1/5\8
VA

type ‘a t = ‘a list type ‘a t = ‘a tree

Are these equivalent?

1/5\8 U 2/4\9
AATAN

[1; 5; 8] + [2; 4: 9]

Two modules can implement the same interface completely differently ...

module type S

module M1 : S module M2 : S

Two modules can implement the same interface completely differently ...

module type S

module M1 : S module M2 : S

Clients can use S without knowing whether they're getting M1 or M2!

Two modules can implement the same interface completely differently ...

module type S

module M1 : S module M2 : S

Clients can use S without knowing whether they're getting M1 or M2!

Both modules ought to behave equivalently w.r.t. the same interface!

Observational Equivalence

equivalent equivalent
Inputs — outputs

How do we check
observational
equivalence?

How do we check
observational
equivalence?

We can use
property-based testing!

Property-Based Testing

Property-Based Testing

1. Write properties

V x. P(x)

Property-Based Testing

1. Write properties 2. Generate random inputs

p
v x. P(x) M > X1 X2 .

Property-Based Testing

1. Write properties 2. Generate random inputs

p
v x. P(x) M > X1 X2 .

3. Check it inputs satisty property

Property-Based Testing

Popularized by:

= QuickCheck

Claessen & Hughes (ICFP 2000)

Why should we care?

1. Testing observational equivalence requires significant programmer effort

Goldstein et al. (ICSE '24) 30 OCaml deve\opers
interviewed on their use of PBT

Property-Based Testing in Practice J a n e
Harrison Goldstein Joseph W. Cutler

Daniel Dickstein

University of Pennsylvania University of Pennsylvania Jane Street
Philadelphia, PA, USA Philadelphia, PA, USA New York, NY, USA | e e
hgo@seas.upenn.edu jwc@seas.upenn.edu ddickstein@janestreet.com

Benjamin C. Pierce Andrew Head

University of Pennsylvania University of Pennsylvania
Philadelphia, PA, USA Philadelphia, PA, USA
bcpierce@seas.upenn.edu head@seas.upenn.edu

ABSTRACT The research literature is full of accounts of PBT successes, e.g.,

Property-based testing (PBT) is a testing methodology where users in telecommunications software [2], replicated file [31] and key-
write executable formal specifications of software components and value [8] stores, automotive software [3], and other complex sys-
an automated harness checks these specifications against many tems [30]. PBT libraries are available in most major programming
automatically generated inputs. From its roots in the QuickCheck languages, and some now have significant user communities—e.g.,
library in Haskell, PBT has made significant inroads in mainstream Python’s Hypothesis framework [37] had an estimated 500K users
languages and industrial practice at companies such as Amazon, in 2021 according to a JetBrains survey [32]. Still, there is plenty of

o 3o e
e 3o e
e 3o e
Mo 3o e
Mo 3o e
e 3o e
o 3o e
e 3o e
o 3o e
o 3o e

10

Why should we care?

1. Testing observational equivalence requires significant programmer effort

e Developers described this Goldstein et al. (ICSE 24)
process as “tedious” &

iy e in languages like OCaml with rich module structures,
overwhelmin g researchers should aim to increase automation around differential

e High “overhead” associated
with writing PBT boilerplate

testing and produce a test harness for comparing modules without
requiring any manual setup

11

Why should we care?

2. Large OCaml software systems
are built using multiple modules
that implement the same signature

MirageOS

Module

Signatures

Implementations

Module type

Implementations

Mirage kv.RO

Mirage kv.RW

Mirage fs.S
Mirage net.S
ARP, IP, UDP, TCP

STACK

RANDOM

HTTP

FLOW

DNS, DHCP, SYSLOG

Crunch, Kv_Mem, Kv_unix,
Mirage tar, XenStore,
Irmin, Filesystems

Wodan

Fat, Git, Fs _Mem, Fs unix
tuntap, vmnet, rawlink

IPV4, IPV6, Qubesdb IP,
Udp, Updv4 socket, Tcp,
Tcpv4 socket,...

Direct, Socket, Qubes,
Static IP,With DHCP

Stdlib, Nocrypto, Test
Cohttp, Httpaf

Conduit.With tcp,
Conduit.With tls

Dns, Unix, Charrua unix,
Charrua, Syslog.Tcp,
Syslog.Udp, Syslog.Tls

Jitsu, Irmin,...

Radanne et al. (2019)

What if | told you ...

What if | told you ...

You can take two modules that implement the same signature ...

module type S

module M1 : S module M2 : S

13

What if | told you ...

You can take two modules that implement the same signature ...

module type S

module M1 : S module M2 : S

... and automatically get PBT code that compares them?

13

M

type expr = ..

let gen_expr ty = ..

let 1interp
—_— —_— $ Mica: OK, passed 10000 tests.

o

Jane Street

module type S = ..
[Q@deriving mical

Q QUICKCHECK

14

Mica automatically generates random S-operations &
tests that M1, M2 are observationally equivalent w.r.t. S

module M1 : S module M2 : S

[1; 5; 8; ..] 1/\8
/N N\

15

Mica automatically generates random S-operations &
tests that M1, M2 are observationally equivalent w.r.t. S

module M1 : S module M2 : S
[1; 5; 8; ..] 1/\8

/NN

Ml.size (Ml.add 2 Ml.empty) M2.size (M2.add 2 M2.empty)

> randomly generated < :

M1.is _empty (..)

M2.is_empty (..)

15

Mica derives the following automatically:

16

Mica derives the following automatically:

Types

(to be explained later)

expr

ty
value

16

Mica derives the following automatically:

Types QuickCheck
(to be explained later) GeﬂeratOr
expr ~
* M ~ €1 € .
value

16

Mica derives the following automatically:

Types QuickCheck Interpreter
(to be explained later) GeﬂeratOr
expr 1

ty
value

16

Mica derives the following automatically:

lypes QuickCheck Interpreter Test Harness
(to be explained later) GeﬂeratOr
expr ; A
ty -\
value 2

16

Symbolic Expressions

Model operations in the module signature using an
inductively-defined algebraic data type

module signature the expr type
type expr =
val empty . ‘a t — | Empty
val 1s_empty : ‘a t — bool «—> | Is_empty of expr

]

val insert . ‘a = ‘at = ‘at «—> | Insert of 1nt * expr

17

Symbolic Expressions

lypes

type ty = Int | Bool | T

Symbolic Expressions

Values

type value =
| ValBool of bool
| ValIntT of int M.t

19

Interpretation Functor

module Interpret (M : S) = ..

expr —> value

Insert (2, Empty) }— M.insert 2 M.empty

20

QuickCheck Generator

randomly generate
symbolic representations of
well-typed expressions

gen_expr : ty — expr Generator.t

2

QuickCheck Generator

randomly generate
symbolic representations of
well-typed expressions

gen_expr : ty — expr Generator.t

Union (Insert (2, Empty), Empty)

v

2

QuickCheck Generator

randomly generate
symbolic representations of
well-typed expressions

gen_expr : ty — expr Generator.t

Union (Insert (2, Empty), Empty) Is_empty (Size Empty)

X

v

2

Test Harness Functor

Checks observational equivalence at concrete types

module TestHarness (M1 : S) (M2 : S) = ..

int ‘a t

22

Observational equivalence is only well-defined tfor concrete types

23

Observational equivalence is only well-defined tfor concrete types

Concrete types

(Detined only in terms of primitive types,

polymorphic equality works!)

int
string list

char * bool

Can be compared directly

v

23

Observational equivalence is only well-defined tfor concrete types

Concrete types Abstract types

(Detined only in terms of primitive types, (Definition is hidden, abstract notion of equality)
polymorphic equality works!)
‘a Set.t

int
. . M1 M2
string list

char * bool , . ,
a list a tree

Can be compared directly Can't be compared directly

v

X

23

Type-Directed Observational Equivalence

Mica checks for equivalence at all unique concrete types

which appear as the return types of functions in S

bool
int

24

Type-Directed Observational Equivalence

Mica checks for equivalence at all unique concrete types

which appear as the return types of functions in S

the results of observation functions

bool } (clients ot S can only observe discrepancies
int between M1 & M2's behavior by calling these functions)

24

QuickCheck
Generator

Generates random
symbolic expressions

(Size
(Union (Add 2 Empty) ..)

J

e

25

QuickCheck Interpreter
Generator

Interprets
Generates random exXpressions
symbolic expressions over modules
(Size M.size
(Union (Add 2 Empty) ..) (M.union (M.add 2 M.empty) ..)

e

25

QuickCheck Interpreter Test Harness
Generator

Interprets Checks
Genergtes randqm expressions observational
symbolic expressions over modules equivalence
(Size M.size vl =7 v2
(Union (Add 2 Empty) ..) (M.union (M.add 2 M.empty) ..)

e

25

Case Studies

Case Studies

Regex Matchers Polynomials Persistent Maps
0 1 '
oo N/
q1 1
0 ;
Character Sets Ephemeral Queues Unsigned Integers

9]9]9 /9|9

-~ o~ -~ LA

oo oo

27

35 manually-inserted bugs caught

Regex Matchers Polynomials Persistent Maps
Os-0 N
0 .
Character Sets Ephemeral Queues Unsigned Integers
AAAAAECEE
NOOOOOXx®QU ‘ H‘ ‘"
dasaaaced :
0jojojog

6 real-world OCaml libraries

28

Case study: How to Specify It

John Hughes

How to Specify it!

A Guide to Writing Properties of Pure Functions.

(TFP "19)

29

Case study: BSTs done 9 ways

Case study: BSTs done 9 ways

Case study: BSTs done 9 ways

Mo

Each bug caught within ~170 randomly generated symbolic expressions

Case study: Finding bugs in student assignments

Periodic Tale of the Elements)

8% I V) SR B 08 W ol 27 63163 a2 o B K

Rb' s

fi@@ﬁﬁﬁﬁﬁ@ﬁﬁ@ﬁf@
ﬂﬁf@#fﬁﬁ@ﬂﬁﬂﬁﬁﬁ
5 Sor e ol .;}.-;.Tu':‘n'fu

S iU L uliugs

-, - Penn’s undergrad intro OCaml class

- 400 students every semester

- Natural source of bugs!

32

Case study: Sets done 400 ways

Homework 3: Abstraction and Modularity
As homework, students were asked to

foo] implement sets using lists & BSTs

oonn CIS 1200, Fall 2023 (we looked at historical data from Fall '23)

Are students’ implementations observationally equivalent?

33

Mica caught bugs in 107 students’ submissions! (29% of the class)

Average no. of random inputs required to catch bug

1000
750
500 ©
> o T : B . . 91% of bugs caught within
oo “ v e _e® o ° 300 randomly generated
O o o ® . o ¢% 4 ° - . . |
1L e 0% o 42 Lo ol ome 0% 200 ®® A2 e symbolic expressions!

(each dot represents a student, lower is better)

34

»{ VS Code Integration wit

Goldstein et al. (to appear at UIST '24)

TycHE: Making Sense of Property-Based Testing Effectiveness

Harrison Goldstein Jeffrey Tao Zac Hatfield-Dodds®
University of Pennsylvania University of Pennsylvania Anthropic
Philadelphia, PA, USA Philadelphia, PA, USA San Francisco, CA, USA
hgo@seas.upenn.edu jefftao@seas.upenn.edu zac.hatfield.dodds@gmail.com
Benjamin C. Pierce Andrew Head
University of Pennsylvania University of Pennsylvania
Philadelphia, PA, USA Philadelphia, PA, USA
bcpierce@seas.upenn.edu head@seas.upenn.edu
Tyche

Harrison Goldstein | & 226installs | % % % % %

A VSCode extension for visualizing data produced when testing a Hypothesis property.

35

Using Tyche to aisplay Mica's test results

Observational equivalence
test results

Observational Equivalence at type Int /\

Sample Breakdown (i)
Unique Duplicate

38 203

Invalid

233 70

Distribution of
symbolic expressions

Distribution of depth (i)

40 -
3 30-
o
E
§ 20
(=]
$*
10-
0._.
\n
i
|
i
(Size (Add 4 Empty)) D
(Size (Add 6 Empty)) (3x]
(Size

(Union (Intersect (Add 6 (Add 6 Empty)) (Rem 7 (Add 7 Empty)))
(Add 7 Empty)))

36

Timing information

Timing Breakdown (i) —

Event

® execute:test
@ generate:k
© generate:t
) generate:v

0 20 40 60 80 100

[Show Cumulative Time] View Selected Samples —

Future Work

Future Work

Support more higher-order functions

fold_left

38

Future Work

Support imperative code

type expr = ..

| Seq of expr * expr

Seq (el, e2) = el; e2

Graphic from Ahrefs

39

https://www.behance.net/gallery/43177011/Programming-Slang-Visualized-T-Shirt-Collection

Future Work

Support ditferential testing of functors

module F (M1 : S1) .. (Mn : Sn)

module G (N1 : S1) .. (Nn : Sn)

40

Future Work

Use coverage-guided fuzzing to guide Mica's QuickCheck generator

Crowbar FuzzChick ParaFuzz
(OCaml "17) (OOPSLA 19) (OCaml '21)

) [T

Jane Street MADRAS “==

41

a PPX extension
[Qderiving mical

that automatically derives
PBT code

Q QUICKCHECK

for testing
module observational equivalence
b

-\

42

Trying out Mica

Installation Web Demo Docs

opam install ppx_mica (Displays code produced by Mica) ngernest.github.io/mica

Mica Demo Up - ppx_mica

o
© ° o E]
A4 Mica is a PPX extension that automates differential testing for a pair of 0Caml modules implementing the same signature. Users annotate module o ff
p px_ m l c a IateSt (0'1 'O) signatures with the directive [@aderiving mica], and at compile-time, Mica derives specialized property-based testing (PBT) code that checks if two M l Ca Py Auto m ated D I e re ntl al Testl n g

modules implementing the signature are observationally equivalent.

For more details about Mica, we refer the reader to our OCaml Workshop '24 paper. fo r 0 Ca m l M o d u les

This webapp (statically) displays the code produced by Mica for a few pre-prepared module signature examples.

DOC S Feel free to contact Ernest Ng with any questions! S
(Finite Sets D) Note: Mica is a research prototype and should not be used in production
stodulo Simat code. (We have made Mica available on Opam so that others may try it
odule Signature:
PPX deriver that automates ¢ out & contribute to Mica if they wish.) Please contact Ernest Ng
. . . (*x A module signature for finite sets %) : ' s . :
differential testing for OCaml modules mdute type S - sig e e (ernest@cs.cornell.edu) if you'd like to contribute to Mica or have
ype ‘a t

any questions!

val empty : 'a t

val is_empty : 'a t = bool
val mem : "a = 'a t = bool
>- Insta” val add : 'a = 'at = 'at
val rem : 'a = 'at = ‘at
)) val size : 'a t - int CONTENTS
opam install ppx_mica D val union : 'at > 'at - ‘at
val intersect : 'at = 'at = 'at
end o
Overview
Property-based testing code (produced by Mica automatically): Installation
open Set_impls USing Mica
(**) - - -
(* Code automatically derived by Mica below *) Limitations
[J [J
module Mica = struct . .
0 n rl u I O n S 0 ST RIS) Compilation notes
type expr =
| Empty -
Is_empty of expr Case Studies

Mem of int % expr

|

I |
welcome ERER
° | Rem of int % expr

|

Size of expr

43

http://ngernest.github.io/mica

PPX Extension

[Qderiving mica]

Q QUICKCHECK

44

Case Studies

C
O
0p
C
0O,
4
X
LL
X
O
Al

[Qderiving mical

Q QUICKCHECK

44

PPX Extension Case Studies VS Coce
Integration

[a)ad er j-V 1 N g mica] | ‘ ’ Goldstein et al. (UIST '24)

& QUICKCHECK rhrct
aaaa 2 Ceé _unnnuo

44

ernest

ngernest/mica opam 1nstall ppx_mica
acs.cornell.edu

PPX Extension V5 Code
Integration

[a)ad er j-V 1 N g mica] | ‘ . Goldstein et al. (UIST '24)

Q QUICKCHECK

44

Appendix:
extrinsic vs intrinsic typing

Some frequently asked questions

Why are Mica's symbolic
expressions extrinsically typed,
and not intrinsically typed?

Why do you have expr
and not ‘a expr 7

46

Extrinsic Intrinsic
Symbolic expressions: Algebraic data type Symbolic expressions: Parameterized GADT
type expr type ‘a expr
type ty
Terms and types defined separately Terms & types are intertwined
(It is possible to construct (By construction, only representations of
represeﬂtaUOnS of IH—typed termS!) We”_typed terms are allcwed)
Auxiliary value type needed for interpreter No auxiliary value type needead
interp : expr — value interp : 'a expr — ‘a

47

So why not use intrinsic typing instead?

module Interpret (M : S) = struct
(** Both [valuel] & [expr] are now GADTs *)
type _ value = ..

o« e . . T = ..
Well, it is possible to write S
an lﬂtrlnSlC&l”y-typed mterpreter (#* [a] 1s a locally abstract type — [a] 1s instantiated
f()r symbclic expressions w/ different concrete types in the function body =*)

let eval value (type a) (v : a value) : a = ..

(x* [interp] uses polymorphic recursion x)
let rec interp : type a. a expr — a = ..

48

Intrinsic typing is non-trivial

In OCaml, writing a QuickCheck generator for random inhabitants ot GADTs is hard

let rec gen_expr ty =
match ty with
| IntT — return Empty
| Bool —

let%bind (e : int M.t expr) = gen_expr IntT in
let b_expr : bool expr = Is empty e 1n

return b_expr

Error: This expression has type bool expr Generator.t
but an expression was expected of type int M.t expr Generator.t
Type bool i1s not compatible with type int M.t

49

Intrinsic typing is non-trivial

It is slightly easier in Haskell, but requires existential types & higher-kinded polymorphism

data Some f where
EFxists :: f t — Some f

(idea due to Stephanie Weirich)

50

Why we used extrinsic typing

- Extrinsic typing is simpler & easier to get right
- Mica needs to derive property-based testing code automatically,
for any possible module signature it might encounter

o1

Other Appendix Slides

"OCaml is two languages in one”

Module Modules Module signatures Functors
language H H
Core . .
language Values Expressions Types

53

Monomorphization

Heuristic: 'a ~~> 1nt

Further reading:

Testing Polymorphic Properties Logarithm and Program Testing

KUEN-BANG HOU (FAVONIA), University of Minnesota, USA
ZHUYANG WANG, University of Minnesota, USA

Jean-Philippe Bernardy, Patrik Jansson, and Koen Claessen
Chalmers University of Technology Randomized p.roperty-bjclsed testing has gained much attention recently, &
at polymorphic properties. Although Bernardy et al. have developed a th|

{bernardy, patrikj,koen}@chalmers.se . . . / .
polymorphic properties to monomorphic ones, it relies upon ad-hoc embedg
the types into a particular form. This paper skips the embedding-projectiq

ESOP 2010 POPL 2022

o4

PPXes (PreProcessor Extensions)

SOURCE CODE

- Preprocessors that operate on the untyped AST
(Parsetree) produced by the OCaml compiler

- PPX derivers = ast node — ast node functions TYPED TREE

- Similar facilities exist in Haskell / Rust

PARSE TREE

A

INTERPRETED COMPILED

SN

Interacting with Mica + Tyche

1. Annotate module signature D 2. Tyche visualizes
& invoke Mica test harness test statistics

module type S = .. I
°F*_--

[Qderiving mical

3. Examine test results

8

4. Update module
implementations

odule M1 : S
odule M2 : S

56

Representing Higher-Order Functions Using Symbolic Expressions
map : (‘a = ‘b) » ‘at > ‘bt

type expr = Map of (int — int) * expr | ..

. . . . Generating Well-Typed Terms That Are Not “Useless”
Shrinking and Showing Functions P
JUSTIN FRANK, University of Maryland, USA

(Functional Pearl) BENJAMIN QUIRING, University of Maryland, USA
LEONIDAS LAMPROPOULQOS, University of Maryland, USA

Random generation of well-typed terms lies at the core of effective random testing of compilers foq
languages. Existing techniques have had success following a top-down type-oriented approach to

Koen Claessen
that makes choices locally, which suffers from an inherent limitation: the type of an expressi
Chalmers University of Technology generated independently from the expression itself. Such generation frequently yields functions wit]
koen®@chalmers.se types that cannot be used to produce a result in a meaningful way, leaving those arguments un|
“use-less” functions can hinder both performance, as the argument generation code is dead but st

Haskell Symposium 2012 POPL 2024

S7

Supporting other PBT libraries besides Core.Quickcheck

e Mica's design is library-agnostic: developers can write other backends that support
other OCaml PBT libraries (e.g. QCheck, Crowbar, ...)

* (We picked Core.Quickcheck just because we were most familiar with it)

* |t'd be interesting to build on recent work extending Etna (an evaluation platform for
different PBT frameworks) for comparing the efticacy of different OCaml PBT libraries

ETNA: An Evaluation Platform for Property-Based Testing
(Experience Report)

JESSICA SHI, University of Pennsylvania, USA

ALPEREN KELES, University of Maryland, USA

HARRISON GOLDSTEIN, University of Pennsylvania, USA
BENJAMIN C. PIERCE, University of Pennsylvania, USA
LEONIDAS LAMPROPOULQS, University of Maryland, USA

ICFP 2023

58

Evaluating PBT Frameworks in OCaml

ABSTRACT
Property-based testing (PBT) is an effective way of finding bugs

in programs by automatically generating test cases to check user-

defined properties. It is especially powerful for testing functional
codebases, where it exploits immutability, purity, and the strong
typing information available. Although the PBT space contains
a wide variety of frameworks with a plethora of approaches to

generating inputs, there is a lack of tools that compare the effec-

tiveness of the frameworks. One such tool, ETNA [6], was recently
presented to empirically evaluate and compare PBT techniques

HE TR TS PICT TR S prep ooty NP VIPNTPEToPr I CIE | P & P29y 19N | IPNWY: W a PO S g

properties should only apply to valid BSTs, not arbitrary binary
trees. A simple solution is to follow the data definition of the tree
type to create an arbitrary binary tree, and then filter out those
that are not valid BSTs. Shi et al. [6] call this approach type-based,
as the generation of the test cases is guided by the type definition.
However, as the workload becomes more and more sophisticated,
this filtering approach falls apart. The chance of a random tree being
a valid red-black tree is far smaller. The chance of a random lambda
calculus expression being type-correct is even lower. This issue
gives rise to bespoke generators, designed with the preconditions
in mind to onlv generate valid test cases. As the input space grows

PLDI 2024 SRC

Compilation Times + How long it takes Mica’s tests to run

In practice, we haven't found compilation / test runtimes to be an issue!

Module Signature (usicr:\ ;n;pl\illl?:;o;rzitrzte;pe) Runtime of PBT test harness
Sets 309.25 us 2.55 ns
Stacks 361.08 ps 2.54 ns
Polynomials 302.82 ps 2.57 ns
Maps 262.84 ps 2.96 ns
Regexes 266.61 us 2.5/ ns

(Measured using Core_bench on an M1 Mac)

59

How to Specify It (BST Case Study) Stats

Bug revealed only in one branch of a pattern-match:

coverage information would help us herel

P

Bug #1 | Bug #2 | Bug #3 | Bug #4 | Bug #5 | Bug #6 | Bug #7 | Bug #8
Min 6 8 504 7 42 10 17 20
Mean 20 62 553 20 286 44 163 229
Max 118 262 7635 94 546 238 312 438

Fig. 3. Average mean no. of trials required to provoke failure in an observational equivalence test

60

Invoking QuickCheck generators for opaque types

* For any user-detfined type t, the user should provide a QuickCheck
generator called quickcheck generator_t

* Mica will then invoke this generator by calling the appropriate directive
from ppx_quickcheck in the derived code

let%bind t

[%quickcheck.generator: t] in ..

61

Related Work

Monolith Articheck
(Pottier 2021) (Braibant et al. 2014)

® GADT-based DSLs for testing ML modules

® Mutation-based fuzzing
® Mica automatically derives the requisite PBT code

62

Related Work

QCSTM Model_quickcheck
(Midtgaard 2020) (Dumont 2020)

® Algebraic data types for representing symbolic expressions

® Mica adds support for binary operations on abstract types

63

Future Work (Engineering)

Contact us if you're interested in contributing to Mica!

Shrinking

Modules with multiple abstract types
Compute “module coverage” for tests
Support other OCaml PBT libraries

ernestgcs.cornell.edu

64

