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Outline of Project

Project Goals

1. Examine applications of electrical network theory to random walks

2. Classify the behavior of random walks on graphs in different
dimensions (≤ 2 vs. ≥ 3)

Project References

I Peter G. Doyle and J. Laurie Snell, Random Walks and Electric
Networks. The Mathematical Association of America, 1984.

I Padraic Bartlett, Electrical Networks and Random Graphs. Lectures
5 & 7 from Math 7H (2014) at University of California, Santa
Barbara. Accessed last Dec 9, 2020 from
http://web.math.ucsb.edu/~padraic/ucsb_2014_15/math_

honors_f2014/math_honors_f2014_lecture5.pdf
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Motivation: 1-D Random Walk

I A random walker starts at node x and has a 1
2
probability of moving to

the left/right
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reaching n before 0

p(x) = 1
2
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2
p(x+1) p(0) = 0

p(n) = 1

Voltage at node x v(x) = 1
2
v(x−1)+ 1

2
v(x+1) v(0) = 0

v(n) = 1

I From this, p(x) = x/n. As n→∞, p(x)→ 0, i.e. the random walker
must return to the origin.

4



Motivation: 1-D Random Walk

I A random walker starts at node x and has a 1
2
probability of moving to

the left/right

· · · · · ·

1
2

1
2

0 1 x − 1 x x + 1 n − 1 n

0

1 Ω

1

1 V

· · ·
x − 1

1 Ω

x

1 Ω

x + 1 n − 1

1 Ω

n· · ·

Probability of
reaching n before 0

p(x) = 1
2
p(x−1)+ 1

2
p(x+1) p(0) = 0

p(n) = 1

Voltage at node x v(x) = 1
2
v(x−1)+ 1

2
v(x+1) v(0) = 0

v(n) = 1

I From this, p(x) = x/n. As n→∞, p(x)→ 0, i.e. the random walker
must return to the origin.

4



Pólya’s Random Walk Theorem

I A walk is recurrent if it is certain that the random walker will return
to the origin

I A walk is transient if the escape probability pesc > 0,
i.e. there is a positive probability that the random walker will never
return to the origin

I (Definitions as in Doyle and Snell, modified from Pólya’s original
definitions)

Theorem

Simple random walks on a d-dimensional lattice Zd are:

I Recurrent for d = 1, 2

I Transient for d ≥ 3
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Random Walks on Z2

I Is it certain that the random walker will return to the origin?
(Recurrent)

I Or, is there a non-zero probability that the walker will never return
to the origin? (Transient)

Origin
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Electrical network on Z2

I It can be shown that the escape probability pesc ∝ 1/Reff , where
Reff is the effective resistance from the origin to infinity

I To determine pesc electrically, compute Reff between the origin and
far-away grounded points

(0, 0)

1V
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Proof of Pólya’s Theorem for Z2: Shorting Nodes

I Shorting: Treat certain subsets of nodes as one node
(electrically: connect nodes with perfectly conducting wires, i.e. set
the resistance of certain edges to 0)

I Rayleigh’s Monotonicity Law: Shorting nodes only decreases the
effective resistance

I Goal: To prove that random walks on Z2 are recurrent, i.e.

pesc ∝
1

Reff
= 0 ⇐⇒ Reff =∞

I Technique: Short nodes on Z2 such that:

Reff ≥ Rshorted =∞
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Proof of Pólya’s Theorem for Z2

(Shorted nodes in red)

4 edges
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1
4 Ω
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Proof of Pólya’s Theorem for Z2

(Shorted nodes in red)
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Proof of Pólya’s Theorem for Z2

4 edges
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I Recalling Rayleigh’s Monotonicity Law,

Reff ≥ Rshorted =
∞∑

n=0

1

8n + 4
=∞

I Thus, random walks on Z2 are recurrent!
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Proof Idea for Higher Dimensions

Origin

I Cutting: Removing an edge from the
network (increases resistance of edge)

I Rayleigh’s Monotonicity Law:
Cutting edges only increases the
effective resistance

I Goal: To prove that random walks on
Z3 are transient, i.e.

pesc ∝
1

Reff
> 0 ⇐⇒ Reff <∞

I Technique: Cut edges outside an
intricate tree such that:

Reff ≤ Rcut <∞
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