
Mechanizing Type Soundness Proofs for Damas-Milner Type Systems
using the Locally Nameless Representation in Coq

Zhiyuan Wu Gary Chen Ernest Ng
{wuzed, hanxic, ngernest}@seas.upenn.edu

CIS 6700 | Spring 2023

May 8, 2023

1 Introduction

Nowadays, polymorphic type influence is ubiquitous in
almost every practical programming language, and our
understanding of its theoretical foundations has been
constantly evolving since its inception [13, 7, 10]. While
this is well understood by experts, the original soundness
proofs of the Damas-Milner type system [13] are not
the most immediately accessible. In this project, we
build on existing efforts that extend and modernize
the Damas-Milner type system [10], and attempt to
reproduce aspects of the soundness proofs in the Coq
proof assistant [6]. We present our statements and proofs
in a format familiar to many of us through the Software
Foundations series [14]. Our explorations reaffirm the
validity of the soundness of the Damas-Milner type
system and raise a few notable yet subtle points that can
aid one’s comprehension of the type soundness proofs.

2 Background & Related Work

2.1 Locally Nameless Representation

Our mechanization uses a locally nameless representation
in Coq. The locally nameless representation involves
representing bound variables using De Bruijn indices and
free variables using names [4].

Aydemir et al. [1] proposed using the locally nameless
representation with cofinite quantification of free variable
names in inductive relations on terms. This allows one
to reason up to alpha-equivalence, i.e. for proofs about
λ-terms to not depend on the specific names chosen for
free variables.

One of the first uses of the locally nameless
representation was by Leroy [12], who used this
representation in Coq for the POPLMark Challenge, a
series of tasks designed to evaluate various techniques for
mechanizing programming languages metatheory.

As discussed by Charguéraud [4], the advantages to
using a locally nameless representation are as follows:
Firstly, the use of names for free variables allows one
to avoid the typical shifting operations that are required

in a pure De Bruijn representation. At the same time,
the use of De Bruijn indices for bound variables ensures
that equivalence classes of alpha-equivalent λ-terms have
the same representation. Additionally, the syntactic
distinction between free and bound variables prevents
variable capture from occurring.

2.2 Damas-Milner Type System

The Damas-Milner type system [13] brings parametric
polymorphism to the lambda calculus extended with
let-expressions.

In this type system, types are stratified into polytypes
and monotypes. Polytypes (also called type schemes)
contain zero or more type variables. A monotype does not
contain type variables. We refer the reader to Appendix A
for an overview of the term language and the syntax of
types.

The typing relation for this system is presented in
figure 2. The typing rules for variables, abstractions and
applications are the same as in the STLC. Additionally,
we note that the rule let allows variables to be bound to
expressions with polytypes.

This notion of let-polymorphism is enabled by the
rules inst and gen. inst takes a polytype and
instantiates the universally quantified variables with
monotypes τ . In particular, quantifiers must be placed at
the outermost (prenex) position [18]. On the other hand,
gen takes a polytype and universally quantifies over type
variables α which are not free in the context. Notably,
the Damas-Milner type system is predicative, i.e. type
variables can only be instantiated to monotypes [10].

One notable property of the Damas-Milner type
system is that a type inference algorithm can infer the
principal type (most general type) for an expression
without the need for any programmer intervention [7].
That is, if an expression e typechecks in the context Γ, the
algorithm can find some polytype σ such that Γ ⊢ e : σ
and any other type for e is an instance of σ [18].

When extending Damas-Milner type inference to
impredicative type systems, Jones et al. [10] contrast the
non-syntax-directed and syntax-directed presentations of

1

the DM type system. In the non-syntax-directed system,
the fact that the conclusion of the gen rule and the
premise of the inst rule share the same syntactic form
(see figure 2) means that one can interleave gen and inst
ad infinitum. This limitation prevents one from being
able to specify a type inference algorithm directly from
the non-syntax-directed type system.

Clément et al. [5] provide a proof of equivalence
between the non-syntax-directed and syntax-directed
type systems, discussing the tradeoffs of the two systems.
In the syntax-directed system, all typing rules have a
distinct syntactic form in their conclusion. This ensures
that the structure of a term’s typing derivation directly
reflects the term’s syntax, which lends itself well to a
type inference algorithm [10]. However, several auxiliary
judgements are needed to infer the most general type
for a term. In particular, an auxiliary instantiation
judgement is used in the var rule to instantiate the type
of a polymorphic variable when it appears. Moreover,
generalization is used in the let rule to infer a polytype
for the RHS of a let-expression [18]. We refer the
reader to Jones et al. [10] for the typing rules of the
syntax-directed system.

Our mechanization uses the non-syntax-directed
system, as its terseness and simplicity lends itself well
to proving type soundness properties.

3 Definitions & Setup

We take the non-syntax-directed presentation of the
Damas-Milner type system1 directly from Jones et al.
[10], which have explicit generalization and instantiation
rules. We define these rules in Ott [15], using its locally
nameless [4] backend to generate the corresponding Coq
definitions. We refer the reader to figure 2 for the typing
rules. Note that in the rule typ-annot, lc means “locally
closed", i.e. all bound variables have bound indices in
their Coq representations.

Instead of the syntactic and semantic soundness
statements regarding domain semantics which are
mentioned in Milner’s original definitions [13], we
have elected to define a simple call-by-value small-step
semantics, and we have proceeded to prove progress and
preservation as the criteria for type soundness. The
stepping rules are as shown in Figure 1. Here we allow
annotated values to step to an unannotated value.

Note that the annotated terms behave the same as
unannotated ones in our usage, as they are merely an
artefact of using the definitions from Jones et al. [10],
who later describe bidirectional inference in their work.
For convenience, we also do not consider annotated
abstractions, hence the absence of a typing rule for it
in figure 2.

Γ ⊢ t : σ (non-syntax-directed Damas-Milner system)

typ-int

Γ ⊢ i : Int

typ-var
uniqΓ

x : σ ∈ Γ

Γ ⊢ x : σ

typ-abs
Γ, x : τ1 ⊢ t : τ2

Γ ⊢ (λ x · t) : (τ1 → τ2)

typ-app
Γ ⊢ t : τ1 → τ2

Γ ⊢ u : τ1

Γ ⊢ t u : τ2

typ-let
Γ ⊢ u : σ

Γ, x : σ ⊢ t : ρ

Γ ⊢ let x = u in t : ρ

typ-annot
lcσ

Γ ⊢ t : σ

Γ ⊢ (t :: σ) : σ

typ-gen
Γ ⊢ t : σ

Γ ⊢ t : ∀α.σ

typ-inst
Γ ⊢ t : ∀α.σ

Γ ⊢ t : [α 7→ τ]σ

Figure 2: Typing Rules

From here, our statements of progress and
preservation are largely standard. The statement for
progress is constrained to closed terms.

Theorem 1 (Progress)
∀ e, σ. ∅ ⊢ e : σ ⇒ value e ∨ ∃ e′. e −→ e′

Theorem 2 (Preservation)
∀Γ, e, e′, σ. Γ ⊢ e : σ ⇒ e −→ e′ ⇒ Γ ⊢ e′ : σ

4 Proof Implementation
As mentioned above, we started with a locally nameless
representation generated by LNgen [2], and stated our
theorem in Coq with the help of Metalib [16].

4.1 Progress
Theorem progress : forall (e:tm) (σ:ty_poly),

typing empty e σ ->
is_value_of_tm e \/ exists e', step e e'.

Here we induct on the typing judgment typing empty e
σ (∅ ⊢ e : σ). Most cases are relatively straightforward,

• var requires a non-empty context and is thus
automatically discharged by contradiction.

• In the case of int and abs, they are both already
values, so (left; constructor) solves the cases.

• All cases where there are congruence stepping rules
can step using said rules.

• For let and annot, there exist directly
corresponding syntactic rules step-let and
step-erase as defined above.

1See Appendix A for the definitions of the terms and type languages

2

t −→ u (small-step evaluation)

step-let1
u −→ u ′

let x = u in t −→ let x = u ′ in t

step-let

let x = v in t −→ t [x ⇝ v]

step-app1
t −→ t ′

t u −→ t ′ u

step-app2
u −→ u ′

(λ x · t) u −→ (λ x · t) u ′

step-app

(λ x · t) v −→ t [x ⇝ v]

step-annot-app2
u −→ u ′

(λ(x :: σ) · t) u −→ (λ(x :: σ) · t) u ′

step-annot-app

(λ(x :: σ) · t) v −→ t [x ⇝ v]

step-erase1
t −→ t ′

t :: σ −→ t ′ :: σ

step-erase

v :: σ −→ v

Figure 1: Small-Step Semantics

• gen follows from the derivation without the ∀
generalization, and inst follows from gen by
induction.

The less obvious case is abs where both t and u are
already values. In this case, in order to take a step, we
need to assert that t has the syntactic form of a lambda
abstraction. This brings us to state the canonical form
lemma for function types.

Lemma 1 (Canonical Forms - Functions)

∀ e, σ. ∅ ⊢ e : σ

⇒ ∀ τ1, τ2. ⊢inst σ ≤ τ1 → τ2

⇒ value e ⇒ ∃x, u. t = λx · u

Lemma canonical_forms_fun:
forall (e:tm) (σ:ty_poly),

typing empty e σ
-> forall (τ1 τ2:ty_mono), inst σ (τ1 → τ2)
-> is_value_of_tm e
-> exists u, t = <{ λ_ · u }>.

For syntax-directed systems such as many common
descriptions of STLC, this would be trivial. However,
in our case, after inverting the typing judgment, we are
left with the inst case, where we cannot make both ∀α.σ
and [α 7→ τ]σ both equal to τ1 → τ2, which is why we
generalize our induction using the inst relation described
below, adapted again from Jones et al. [10], which helps
us describe exactly which types should have canonical
forms.

⊢inst σ ≤ ρ (instantiation)

inst-refl

⊢inst ρ ≤ ρ

inst-trans
⊢inst [α 7→ τ]σ ≤ ρ

⊢inst ∀α.σ ≤ ρ

Figure 3: Instantiation Relation

This ties our induction together, although not without
significant further challenges. For example, a σ which
instantiates to a function type does not always have a
non-generalized principal type following the form of a
function type. We will discuss this issue further in section
5 (Challenges) below.

4.2 Preservation

To prove preservation, we first needed to prove the
weakening and substitution lemmas.

Theorem preservation: forall (E : ctx) e e' T,
typing E e T ->
step e e' ->
typing E e' T.

Lemma typing_weakening: forall (E F : ctx) t T,
typing E t T
-> uniq (F ++ E)
-> typing (F ++ E) t T.

Lemma typing_subst: forall (E F : ctx) e u
S T (z : atom),
typing (F ++ [(z, S)] ++ E) e T

-> typing E u S
-> typing (F ++ E) (subst_tm u z e) T.

As discussed by Weirich [17] and Aydemir et al [1],

3

there are two nuances that need to be addressed with the
weakening lemma in our representation:

Firstly, since contexts are represented as association
lists (where keys are atoms and values are ty_polys),
a context is weakened via the list append operation.
However, one limitation is that contexts can be weakened
in the "middle" (as opposed to just one end of the
context). Thus, the statement of the weakening lemma
needs to be modified such that we quantify over all
extensions to the original context E. Moreover, we needed
to use the remember tactic to tell Coq to treat the
extended context as a new context E’ when inducting
over typing derivations.2

Secondly, it is necessary to show that the function
argument x is fresh with respect to the weakened context.
Informal proofs on paper avoid this problem by adopting
Barendregt’s Variable Convention, which assumes that
bound variables are chosen to be sufficiently fresh (i.e.
different from free variables) [3]. However, in mechanized
proofs, cofinite quantification is needed for the abs, let
and gen typing rules so that the IH for the corresponding
cases in the proof is strengthened. Namely, instead of just
holding for one single variable (as in the "exists-fresh"
statement ofthese rules), the IH now holds for any fresh
variable so long it is some finite set which includes the
domain of the extended context.

Having proved weakening and substitution, we
proceeded to prove the main preservation theorem. We
initially tried proving preservation via inducting on
typing judgements. However, we realized that our
inductive hypothesis for the Abs case was insufficiently
strong. As Harper discusses [9] 3, inducting on the typing
judgement is not entirely appropriate because for each of
the relevant cases (i.e. app, gen, inst) we may end up
with multiple subcases after inversion, which makes the
proof more intractable. Moreover, the typing for gen
and inst cases will simply be some arbitrary σ and some
expression, with limited extra information given. We
later switched to proving preservation via induction on
the small-step evaluation relation instead. Inducting on
the small-step evaluation means we no longer have to deal
with gen and inst cases where the typing is relatively
general (some σ instead of a particular form). We can
then restrict the expression into some more specific form
which aids our reasoning. To prove preservation under the
induction of step relation, we needed inversion lemmas for
each typing rule, in particular the let rule, with the idea
being that any derivation tree for a Let-expression can
be rephrased so that it ends in an application of the let
rule. This is necessary because in the non-syntax-directed
type system, the gen and inst rules can be interleaved.
We discussed some challenges we faced while doing this

in section 5 below.

5 Challenges

Throughout the process of mechanizing type soundness
proofs, we encountered a few challenges.

The first challenge was in the definition of
instantiation. We originally defined instantiation as what
is suggested in Figure 3. That is, we have a base
case of a ρ instantiating to itself (inst-refl), and a
inst-trans rule, similar to an induction step, in which
the outer type variables are substituted with a τ . With
the instantiation relation, we wanted to strengthen the
hypothesis when proving the gen and inst cases in
the canonical forms lemma for functions. However,
the problem we encountered is that the aforementioned
process may not actually be valid. Consider the type
∀α.α → α of a polymorphic identity function. In this
case, one can substitute α with a type of the form
τ1 → τ2, which will convert the type of this polymorphic
identity function into a function type τ . Therefore, we
hypothesized that such definition does not work well and
needs further editing.

Our second attempt was to rewrite the trans rule
in the instantiation without the substitution. We
hypothesized that such a form would benefit us by solving
the problem above. However, the problem remains.
Specifically, due to the restrictions of Ott, for a type
∀α.σ, we can only observe and reason about σ when
we open it. In other words, in order for us to use
the induction hypothesis in the gen and inst cases, we
need to open σ with respect to α using an arbitrary but
particular τ (which is what Ott would generate for us in
order to maintain the consistency of the locally nameless
representation in the type). However, such a restriction
caused difficulties for two reasons: 1.) The previous cases
for gen and inst that we weren’t able to prove are still
impossible, and 2.) the inst case in the canonical forms
lemma (after we induct on the typing derivation) has a
weak induction hypothesis which states that we are able
to open the σ type with some random τ . However, the
goal we are trying to show is that we would like to open
the σ type with some arbitrary free variables.

As Yiyun suggested, we could define two fixpoint
functions outside of Ott that would forcefully "peel off"
all the ∀ quantifiers in front of a τ . Specifically, we can
define two functions as follows:

P (σ) =

⊤ if σ = Function type
P (σ1) if σ = ∀α.σ1

⊥ otherwise
(1)

2This issue is avoided in Software Foundations [14], where contexts are represented as partial maps. However, this representation
requires a notion of map inclusion to be defined when discussing extensions to a context.

3Discussed in pg. 70 (Section 11.1) of Harper’s Programming Languages: Theory and Practice (2006).

4

B(σ) =

⊤ if σ = Bounded type variable
P (σ1) if σ = ∀α.σ1

⊥ otherwise
(2)

This two functions go against the restrictions of the
locally nameless representation because we intentionally
leave bounded variables inside the expressions intact in
order to aid our reasoning. Specifically, the first function
allowed us to manually inspect whether the inside of a
σ looks like a function type. If so, this means that
the expression must always be a function (one cannot
open a σ type that looks like a function and make it
a non-function). The second function allowed us to
identify a type with the structure of ∀α1.∀α2.∀αk. αi

where 1 ≤ i ≤ k. As Yiyun pointed out, such a case
cannot happen in the empty context because there is no
corresponding term. Given that this structure is our main
concern, if we can eliminate this possibility, then we can
prove in the canonical forms lemma that the rest of the
terms in the gen or inst cases must be in the form of a
function (i.e. return ⊤ from P (·)).

With the two functions, we can make the canonical
forms lemma stronger and say that a σ is a function
type if P (σ) holds. Moreover, we no longer have to use
the instantiation relation defined earlier since P (σ) is a
stronger relation.

However, after this change was adopted, it is not the
case that the entirety of the proof of progress proceeded
without issue. Some challenges remain when using P (σ)
and B(σ) predicates. One main challenge we faced
initially was the difficulty of proving the ∀α.σ case of the
P and B predicates when opening. That is, we want to
prove that:

∀σ ∀x, P (σˆx) = P (σ)

∀σ ∀x, B(σˆx) = B(σ)

where x is a free variable or a bound variable. Originally,
we wrote the statement similar to what is shown as
follows:

Lemma normalize_open_n_var_rec :
forall (σ: ty_poly) (n : nat) (a : tyvar),

P (open_ty_poly_wrt_ty_mono σ
(ty_mono_var_f a))

= P (σ).

However, the issue with the above statement
happens in the ∀α.σ. Specifically, the induction
hypothesis is not strong enough in that the induction
hypothesis is for some random index (if we unfold
the open_ty_poly_wrt_ty_mono definition), instead
of for any arbitrary index. The solution, as Yiyun
pointed out, is to state the lemmas with respect to
open_ty_poly_wrt_ty_mono_rec. In this case, we are

able to prove for the statement for all indices, and we
were able to prove canonical forms at the end by stating
a newer version of the lemma:

Lemma canonical_forms_fun:
forall (e:tm) (σ:ty_poly),

typing empty e σ
-> P(T)
-> is_value_of_tm e
-> exists u, t = <{ λ_ · u }>.

The gen case can be solved by recognizing that σ will
remain a function when it is opened with a free variable.
Similarly, the inst case can be solved with the following
two lemmas:

Lemma not_bad_open_func_equiv:
forall (σ:ty_poly) (n : nat) (τ : ty_mono),

~ B (σ)
-> P (open_ty_poly_wrt_ty_mono_rec n τ σ)

= P (σ).

which says that if σ is not in the form
∀α1.∀α2.∀αk.αj , then if σ looks like a function,
opening it with any τ will be a function. Another lemma
Yiyun advised us to use was:

Theorem wt_no_bad_poly:
forall (Gamma : ctx) (e : tm) (sig : ty_poly)

(Htyping: typing Gamma e sig),
is_value_of_tm e

-> not (bad_fun_poly sig).

This lemma says that if a term is well type, and that term
is a value, then it is impossible for the term to be bad.
As Yiyun had explained, the reason why this hold is that
there is no expression that can give the type ∀α.α.

Using both lemmas, we were able to replicate Yiyun’s
proof of canonical forms. We have listed this process
as part of the challenges due to the struggles we faced,
and we would not be able to surmount these difficulties
without Yiyun’s assistance.

Another challenge we faced which we weren’t able
to fully resolve was finding the correct statement of the
auxiliary inversion lemmas for the proof of preservation
as shown below:

Lemma let_inversion : forall Gamma u e sig',
typing Gamma (exp_let u e) sig'

-> exists L (sig : ty_poly),
typing Gamma u sig

/\ forall x, x `notin` L
-> typing ((x, sig)::Gamma) e sig'.

Lemma annot_inversion :
forall (Gamma : ctx) (e : tm)

(sig sig': ty_poly),
typing Gamma (exp_type_anno e sig) sig' ->
sh sig sig' ->
typing Gamma e sig.

5

We are in the process of proving these inversion
lemmas, along with the inversion lemma for application,
and abstraction. For the Let-expression inversion lemma,
we are having trouble in making the induction hypothesis
generalized enough. Currently we have some cases in
which the type for u in the goal is not necessarily the
same as the type for u in the context due to the existential
quantifier in the statement of the lemma. We need to
generalize the typing for u to strengthen the induction
hypothesis.

For the inversions lemma for annotations, currently
we are still struggling with some cases in which there
is insufficient useful information in the context. For
instance, we have struggled to reconcile the expression
in the goal e, with the expressions in the context
exp_type_annot e. We believe that some other
relationship (maybe a stepping relationship), needs to be
included in the lemma statement. We also suspect that we
need to declare some Fixpoint functions that can reason
about open_ty_poly_wrt_ty_mono. The situation we
are facing may be similar to our earlier struggles with
proving that P (·) and B(·) hold. The solution in this
case may be to also define some Fixpoint functions such
that we can reason about the unfolded definition of
open_ty_poly_wrt_ty_mono_rec instead of the folded
version, in which we are only supplied with an arbitrary
index instead of all indices.

Specifically, we also had some trouble integrating
cofinite quantification and a shallow subsumption relation
into the statement of the inversion lemmas. We attach our
attempt at defining shallow subsumption in Ott below:

Inductive sh : ty_poly -> ty_poly -> Prop :=
| sh_refl :

forall (sig:ty_poly),
lc_ty_poly sig ->
sh sig sig

| sh_spec :
forall (rho1 rho2:ty_rho) (tau:ty_mono),

sh (open_ty_poly_wrt_ty_mono
(ty_poly_rho rho1) tau)
(ty_poly_rho rho2) ->

sh (ty_poly_poly_gen (ty_poly_rho rho1))
(ty_poly_rho rho2)

| sh_skol :
forall (L:vars) (sig:ty_poly) (rho:ty_rho),

(forall a , a \notin L -> sh
(open_ty_poly_wrt_ty_mono sig

(ty_mono_var_f a))
(ty_poly_rho

(open_ty_rho_wrt_ty_mono rho
(ty_mono_var_f a)))) ->

sh (ty_poly_poly_gen sig)
(ty_poly_poly_gen (ty_poly_rho rho)).

We are still unsure whether our definition of the
subsumption rule is the cause of the difficulties we face.

Specifically, we are unsure whether the Ott-generated
cofinitely quantified version of the skol rule (sh_skol)
accurately reflects the "exists-fresh" statement of the
corresponding rule on paper [10]. Another uncertainty
we have is that the Ott-generated version of the spec
rule (sh_spec) quantifies over all monotypes τ when
opening ρ1 with respect to τ , and we are unsure whether
this quantification is appropriate as there many be other
conditions that τ must satisfy.

To overcome these limitations for the inversion lemma
and proceed, we could examine Leroy’s solution to the
POPLMark Challenge which uses the locally nameless
representation [12], and investigate how the inversion
lemmas and type substitution lemmas in Leroy’s Coq
development (originally proven for System F<:) could be
adapted to the Damas-Milner type system.

6 Future Work

In our efforts to address the challenges mentioned above,
we have discovered that many of our issues stemmed
from the non-syntax-directed typing rules. Thus the first
obvious thing to explore would be the syntax-directed
version of the system also described in Jones et al. [10],
as well as its equivalence with the non-syntax-directed
version following the proof outline presented by Clément
et al. [5]. We suspect that in the syntax-directed
system, type soundness proofs would likely be more
straightforward. Additionally, while the completeness
theorem of the type inference algorithm is generally
deemed more difficult, it could also be worthwhile for us
to mechanize its proof.

We can also extend our proofs to involve more
automation. As pointed out by Yiyun, we can use tactics
libraries such as CoqHammer that could automate the
simple destruct / induction / inversion process, in which
we currently had to perform manual case analysis. Such
tools may help us in help us move the expedition further.

We are also curious about the role of the locally
nameless representations played in our struggles because
we had to constantly deal with opening and closing the
types. Thus, it may also be informative to attempt
the same proofs in other representations, such as De
Bruijn indices [8], although this might require more
manual statements of shifting and closed-ness constraints,
especially if we continue to use Coq.

One of the troubles we kept facing was considering
the edge cases that may potentially falsify a statement.
Thus, we are also interested in incorporating randomized
property-based testing tools like QuickChick [11] as a
sanity check when verifying the statement of our lemmas.

We could also expand our setup to reproduce
soundness proofs of other systems in [10, Jones et al.],
which include extensions such as higher-ranked types and
bidirectional inference.

6

7 Conclusion
Through this project, we have learned how to use Ott
and LNGen to mechanize type soundness proofs using
the locally nameless presentation.

We have gained a much deeper appreciation of the
challenges associated with variable binding, and how
using the locally nameless representation with cofinite
quantification enables stronger inductive hypotheses
compared to standard "exists-fresh" quantification. This
is because for rules which involve opening abstractions,
the cofinitely-quantified IH holds for not just one single
name, but instead for all variable names except those in
some finite set L. Moreover, in practice, we can include
the finitely many names that lead to clashes in L, which
makes the cofinitely-quantified versions of introduction
forms practical to use in proof developments.

In the non-syntax-directed type system, we faced
the challenge whereby the gen and inst rules could
be invoked at any time during a typing derivation.
Our experience mechanizing type soundness proofs for
this system gave us a deeper appreciation for the
syntax-directed presentation of the type system, where
there is at most one typing rule that can be applied for
each possible syntactic form of a term.

8 Acknowledgements
We thank Yiyun Liu for his advice on the canonical
forms lemma for functions, his hints on Coq definitions,
and his advice on Coq proof techniques such as utilizing
CoqHammer for potential automation. We also want to
thank Professor Stephanie Weirich for her advice and
mentorship throughout this project, including pointing
out the appropriate generalization of the canonical forms
lemma, as well as the purpose of the inversion lemmas for
preservation.

7

References
[1] Aydemir, B., Charguéraud, A., Pierce, B. C., Pollack, R., and Weirich, S. Engineering formal

metatheory. SIGPLAN Not. 43, 1 (jan 2008), 3–15.

[2] Aydemir, B. E., and Weirich, S. Lngen: Tool support for locally nameless representations.

[3] Barendregt, H. P. The lambda calculus - its syntax and semantics, vol. 103 of Studies in logic and the
foundations of mathematics. North-Holland, 1985.

[4] Charguéraud, A. The locally nameless representation. J. Automat. Reason. 49, 3 (Oct. 2012), 363–408.

[5] Clément, D., Despeyroux, T., Kahn, G., and Despeyroux, J. A simple applicative language: Mini-ml.
In Proceedings of the 1986 ACM Conference on LISP and Functional Programming (New York, NY, USA, 1986),
LFP ’86, Association for Computing Machinery, p. 13–27.

[6] Coq Development Team. The Coq Proof Assistant, version 8.8.0. https://doi.org/10.5281/zenodo.
1219885, Apr 2018.

[7] Damas, L., and Milner, R. Principal type-schemes for functional programs. In Proceedings of the 9th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages - POPL ’82 (New York, New York,
USA, 1982), ACM Press.

[8] de Bruijn, N. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation,
with application to the church-rosser theorem. Indagationes Mathematicae (Proceedings) 75, 5 (1972), 381–392.

[9] Harper, R. Programming Languages: Theory and Practice.

[10] Jones, S. P., Vytiniotis, D., Weirich, S., and Shields, M. Practical type inference for arbitrary-rank
types. J. Funct. Prog. 17, 1 (Jan. 2007), 1–82.

[11] Lampropoulos, L., and Pierce, B. C. QuickChick: Property-Based Testing In Coq. Electronic textbook.
https://softwarefoundations.cis.upenn.edu/qc-current/index.html, 2018.

[12] Leroy, X. A locally nameless solution to the POPLmark challenge. 2007.

[13] Milner, R. A theory of type polymorphism in programming. Journal of Computer and System Sciences 17, 3
(1978), 348–375.

[14] Pierce, B. C., de Amorim, A. A., Casinghino, C., Gaboardi, M., Greenberg, M., Hriţcu, C.,
Sjöberg, V., and Yorgey, B. Software Foundations. 2008.

[15] Sewell, P., Zappa Nardelli, F., Owens, S., Peskine, G., Ridge, T., Sarkar, S., and Strnisa, R.
Ott: Effective tool support for the working semanticist. J. Funct. Program. 20 (01 2010), 71–122.

[16] Weirich, S. Language Specification & Variable Binding: The Locally Nameless Representation. https:
//www.seas.upenn.edu/~sweirich/dsss17/html/Stlc.Lec1.html. CIS 6700 Lecture, 2023–01-23.

[17] Weirich, S. Reasoning about LN: Typing (Preservation & Progress). https://www.seas.upenn.edu/
~sweirich/dsss17/html/Stlc.Lec2.html. CIS 6700 Lecture, 2023–01-25.

[18] Weirich, S. Practical type inference for arbitrary-rank types. CIS 6700 Lecture Slides, 2023. Lecture delivered
on: 2023–03-22.

8

https://doi.org/10.5281/zenodo.1219885
https://doi.org/10.5281/zenodo.1219885
https://softwarefoundations.cis.upenn.edu/qc-current/index.html
https://www.seas.upenn.edu/~sweirich/dsss17/html/Stlc.Lec1.html
https://www.seas.upenn.edu/~sweirich/dsss17/html/Stlc.Lec1.html
https://www.seas.upenn.edu/~sweirich/dsss17/html/Stlc.Lec2.html
https://www.seas.upenn.edu/~sweirich/dsss17/html/Stlc.Lec2.html

A Term & Type Grammars
Monotypes, τ ::= Monotypes

| Int
| α
| τ1 → τ2

Rho-types, ρ ::= Rho-types
| τ

Polytypes, σ ::=
| ρ
| ∀α.σ

Exp, t , u, e ::=
| i Literal
| x Variable
| e e ′ Application
| λ x · e Abstraction
| let x = e in e ′ Local binding
| if e then e ′ else e ′′ Local binding
| λ(x :: σ) · t Typed abstraction
| t :: σ Type annotation

Value, v ::=
| i
| λ x · t

Typing contexts, Γ ::=
| ∅ empty context
| Γ, x : σ assumption

B Up-to-Date Progress
See https://github.com/wu000168/milner_types-cis6700
(The latest code for the lemmas discussed in section 5 (Challenges) is located in the dev-3 branch.)

9

	Introduction
	Background & Related Work
	Locally Nameless Representation
	Damas-Milner Type System

	Definitions & Setup
	Proof Implementation
	Progress
	Preservation

	Challenges
	Future Work
	Conclusion
	Acknowledgements
	Term & Type Grammars
	Up-to-Date Progress

