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Motivation

The 𝜆-calculus provides simple semantics for understanding
functional abstraction.

We can encode data purely within the untyped 𝜆-calculus!
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Remarks & notational conventions

• Function application is left-associative:

Write 𝑡1 𝑡2 𝑡3 to denote (𝑡1 𝑡2) 𝑡3

• Bodies of lambda abstractions extend as far right as possible:

Write 𝜆𝑥. 𝜆𝑦. 𝑥 𝑦 𝑥 to denote 𝜆𝑥. (𝜆𝑦. ((𝑥 𝑦) 𝑥))

• A term with no free variables is closed
• Closed terms are called combinators

• Simplest combinator: the identity function id

id = 𝜆𝑥. 𝑥
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Agenda

1. Encoding simple datatypes
Church Booleans

Pairs

2. Church numerals
Arithmetic operations

Predecessor

Testing equality

3. Y-combinator & recursion
Factorial

4. Scott encodings
Church vs Scott numerals

Chruch vs Scott lists
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Encoding simple datatypes



Church Booleans

Definition
Let True and False be represented by:

tru = 𝜆𝑡. 𝜆𝑓. 𝑡
fls = 𝜆𝑡. 𝜆𝑓. 𝑓

Note: tru & fls are normal forms!

Definition
The test combinator tests the truth value of a Boolean:

test = 𝜆𝑙. 𝜆𝑚. 𝜆𝑛. 𝑙 𝑚 𝑛
test tru 𝑣 𝑤 → 𝑣
test fls 𝑣 𝑤 → 𝑤
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The test combinator

Observe:

test 𝑏 𝑣 𝑤 ⟶ 𝑏 𝑣 𝑤

Example: (𝛽-redexes underlined)

test tru 𝑣 𝑤 → (𝜆𝑙. 𝜆𝑚. 𝜆𝑛. 𝑙 𝑚 𝑛) tru 𝑣 𝑤
→ (𝜆𝑚. 𝜆𝑛. tru 𝑚 𝑛) 𝑣 𝑤
→ (𝜆𝑛. tru 𝑣 𝑛) 𝑤
→ tru 𝑣 𝑤
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The test combinator (cont.)

Observe:

test tru v w ⟶ 𝑣
“if true then v else w”⟶ 𝑣

Example: (𝛽-redexes are underlined)

test tru v w → …
→ tru v w
→ (𝜆𝑡. 𝜆𝑓. 𝑡) 𝑣 𝑤
→ (𝜆𝑓. 𝑣) 𝑤
→ 𝑣

Similarly, test fls v w ⟶ 𝑤.
(“if false then v else w”⟶ w)
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Conjunction

Intuition: and 𝑏 𝑐 ≈ “if b then c else false”

Definition

and = 𝜆𝑏. 𝜆𝑐. 𝑏 𝑐 fls

For Boolean values b, c, we have that:

and b c = { 𝑐 if 𝑏 = tru
𝑏 if 𝑏 = fls

Examples:

and tru b → tru b fls
→ 𝑏

and fls b → fls b fls
→ fls
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Disjunction

Intuition: or 𝑏 𝑐 ≈ “if b then true else c”

Definition

or = 𝜆𝑏. 𝜆𝑐. 𝑏 tru 𝑐

Examples:

or tru b → tru tru b
→ tru

or fls b → fls tru b
→ 𝑏
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Negation

Intuition: not 𝑏 ≈ “if b then false else true”

Definition

not = 𝜆𝑏. 𝑏 fls tru

not tru → (𝜆𝑏. 𝑏 fls tru) tru
→ tru fls tru
→ fls

not fls → (𝜆𝑏. 𝑏 fls tru) fls
→ fls fls tru
→ tru
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Pairs

Intuition: (𝑣, 𝑤) ≈ “𝜆𝑏. if b then 𝑣 else 𝑤”
pair = 𝜆𝑣. 𝜆𝑤. 𝜆𝑏. 𝑏 𝑣 𝑤

⟹ pair v w = 𝜆𝑏. 𝑏 𝑣 𝑤

When applied to a Boolean b, pair v w applies b to v and w :

pair v w tru → tru v w
→ 𝑣

pair v w fls → fls v w
→ 𝑤

This motivates the projection functions fst & snd:

fst = 𝜆𝑝. 𝑝 tru
snd = 𝜆𝑝. 𝑝 fls
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Pairs (cont.)

Example: (𝛽-redexes underlined)

fst (pair v w) → fst (𝜆𝑏. 𝑏 𝑣 𝑤)
→ (𝜆𝑝. 𝑝 tru) (𝜆𝑏. 𝑏 𝑣 𝑤) (by definition of fst)

→ (𝜆𝑏. 𝑏 𝑣 𝑤) tru
→ tru v w
→ 𝑣
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Church numerals



Church numerals

Intuition: “A number 𝑛 is a function that does something 𝑛 times”

Definition
Define the Church numerals 𝑐0, 𝑐1, 𝑐2, … as follows:

𝑐0 = 𝜆𝑠. 𝜆𝑧. 𝑧
𝑐1 = 𝜆𝑠. 𝜆𝑧. 𝑠 𝑧
𝑐2 = 𝜆𝑠. 𝜆𝑧. 𝑠 (𝑠 𝑧)

…

Each 𝑛 ∈ ℕ is represented by a combinator 𝑐𝑛 that takes arguments
s and z (“successor” and “zero”) and applies s to z for 𝑛 times.

𝑐𝑛 = 𝜆𝑠. 𝜆𝑧. ⟨apply s to z for 𝑛 times⟩
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Successor function

Definition
The successor function scc on Church numerals is defined as:

scc = 𝜆𝑛. 𝜆𝑠. 𝜆𝑧. 𝑠 (𝑛 𝑠 𝑧)

Intuition: 𝑛 + 1 ≈ “apply 𝑠 to 𝑧 for 𝑛 times, then apply 𝑠 once more”

scc takes a Church numeral n and returns another Church numeral⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
function that takes 𝑠, 𝑧

& applies 𝑠 repeatedly to 𝑧
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Successor function (cont.)

Example: showing that “scc 0 = 1”:

scc 𝑐0 → (𝜆𝑛. 𝜆𝑠. 𝜆𝑧. 𝑠 (𝑛 𝑠 𝑧))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
scc

(𝜆𝑠. 𝜆𝑧. 𝑧)⏟
𝑐0

→ 𝜆𝑠. 𝜆𝑧. 𝑠 ((𝜆𝑠. 𝜆𝑧. 𝑧)⏟
𝑐0

𝑠 𝑧)

→ 𝜆𝑠. 𝜆𝑧. 𝑠 ((𝜆𝑧. 𝑧)⏟
id

𝑧)

→ 𝜆𝑠. 𝜆𝑧. 𝑠 𝑧
= 𝑐1 (by definition of 𝑐1)
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Successor function (cont.)

Another way* to define the successor function:

scc2 = 𝜆𝑛. 𝜆𝑠. 𝜆𝑧. 𝑛 𝑠 (𝑠 𝑧)

Intuition: “apply s to (s z) for 𝑛 times”

(as opposed to “applying s to z for (𝑛 + 1) times”)

*TAPL Exercise 5.2.2
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Addition of Church numerals

plus = 𝜆𝑚. 𝜆𝑛. 𝜆𝑠. 𝜆𝑧. 𝑚 𝑠 (𝑛 𝑠 𝑧)
⟹ plus 𝑚 𝑛⏟

𝑚+𝑛
= 𝜆𝑠. 𝜆𝑧. 𝑚 𝑠 (𝑛 𝑠 𝑧)

Intuition: To compute 𝑚 + 𝑛,

1. Apply s iterated n times to z⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛 𝑠 𝑧

...

2. ... then apply s to the result for m more times⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚 𝑠 (𝑛 𝑠 𝑧)
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Addition (cont.)

Recall: 𝑐1 = 𝜆𝑠. 𝜆𝑧. 𝑠 𝑧

Example: Proving 1 + 1 = 2

plus 𝑐1 𝑐1 → 𝜆𝑠. 𝜆𝑧. 𝑐1 𝑠 (𝑐1 𝑠 𝑧)

→ 𝜆𝑠. 𝜆𝑧. 𝑐1 𝑠 (𝑠 𝑧)

→ 𝜆𝑠. 𝜆𝑧. 𝑠 (𝑠 𝑧)
= 𝑐2 (by definition of 𝑐2)
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Multiplication of Church numerals

Definition
times = 𝜆𝑚. 𝜆𝑛. 𝑚 (plus n) 𝑐0

𝑚 (plus n) 𝑐0 ≈ “apply plus n iterated 𝑚 times to 𝑐0 (zero)”
≈ “add together 𝑚 copies of 𝑛”

18



Multiplication (cont.)

Can we define multiplication without using plus? Recall that:

times m n ≈ “add together 𝑚 copies of 𝑛”

This motivates an alternate definition*:

times = 𝜆𝑚. 𝜆𝑛. 𝜆𝑠. 𝜆𝑧. 𝑚 (𝑛 𝑠) 𝑧

Intuition: 𝑚 (𝑛 𝑠) 𝑧 ≈ “apply (n s) to z for 𝑚 times”*

*TAPL Exercise 5.2.3
*Here, n s is akin to plus n
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Multiplication example

times = 𝜆𝑥. 𝜆𝑦. 𝜆𝑎. 𝑥 (𝑦 𝑎)

Compute 3 × 3:

times 𝑐3 𝑐3 = (𝜆𝑥. 𝜆𝑦. 𝜆𝑎. 𝑥 (𝑦 𝑎)) 𝑐3 𝑐3
→ (𝜆𝑎. 𝑐3 (𝑐3 𝑎))

20



Multiplication example (cont.)

Consider the term (𝑐3 𝑎):
𝑐3 = 𝜆𝑠. 𝜆𝑧. 𝑠 (𝑠 (𝑠 𝑧))

Applying 𝑐3 to 𝑎 produces a function that applies 𝑎 three times (Rojas) 21



Multiplication example (cont.)

Let 3a denote (𝑐3 𝑎). Now, consider 𝑐3 (3a):

𝜆𝑎. 𝑐3 (3a) = (𝜆𝑎. (𝜆𝑠. 𝜆𝑏. 𝑠 (𝑠 (𝑠 𝑏)))⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑐3

(3a))

→ 𝜆𝑎. 𝜆𝑏. 3a (3a (3a 𝑏))

Applying 𝑐3 to 3a returns a function that applies 3a three times
= applies 𝑎 for (3 × 3) times

Example from Rojas (2015), A Tutorial Introduction to the Lambda Calculus

22



Multiplication example (cont.)

𝑐3 applied to 3a, visualized

Diagram from Rojas (2015), A Tutorial Introduction to the Lambda Calculus 23



How should we define predecessor for Church numerals?

24



Predecessor function

Strategy: Create a pair (𝑛 − 1, 𝑛), then pick the 1st element of the pair

We define two auxiliary functions:

zz = pair 𝑐0 𝑐0
ss = 𝜆𝑝. pair (snd 𝑝) (plus 𝑐1 (snd 𝑝))

When applied to a pair (𝑖, 𝑗), ss returns a pair (𝑗, 𝑗 + 1):

ss (pair 𝑐𝑖 𝑐𝑗) = pair 𝑐𝑗 𝑐𝑗+1

The predecessor function prd involves applying ss to pair 𝑐0𝑐0 for
𝑚 times, then projecting the 1st component:

prd = 𝜆𝑚. fst (𝑚 ss zz)

25
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prd = 𝜆𝑚. fst (𝑚 ss zz)
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Predecessor function

Strategy: Create a pair (𝑛 − 1, 𝑛), then pick the 1st element of the pair

We define two auxiliary functions:
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Predecessor function

prd ≈ “apply ss to pair 𝑐0 𝑐0 for 𝑚 times”

≈ {pair 𝑐0 𝑐0 when 𝑚 = 0
pair 𝑐𝑚−1 𝑐𝑚 otherwise

Evaluating prd 𝑐𝑛 requires 𝑂(𝑛) steps!

(diagram from TAPL)
26



5-minute break
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Roadmap for the next few slides

Aim: To represent factorial in the untyped 𝜆-calculus
To do this, we need to discuss the following:

1. Testing if a Church numeral ?= 0
2. Equality of Church numerals
3. Y-comabintor & recursion

27



Testing if a Church numeral ?= 0

Definition

isZero = 𝜆𝑚. 𝑚 (𝜆𝑥. fls) tru

Example (𝛽-redexes underlined):

isZero 𝑐0 = (𝜆𝑚. 𝑚 (𝜆𝑥. fls) tru) 𝑐0
= (𝜆𝑚. 𝑚 (𝜆𝑥. fls) tru) (𝜆𝑠. 𝜆𝑧. 𝑧) (by definition of 𝑐0)
→ (𝜆𝑠. 𝜆𝑧. 𝑧) (𝜆𝑥. fls) tru
→ (𝜆𝑧. 𝑧) tru
→ tru
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Equality of Church numerals

Intuition: 𝑚 == 𝑛 ⟺ (𝑚 − 𝑛) == 0 ∧ (𝑛 − 𝑚) == 0

Definition
The equal function tests two Church numerals for equality,
returning a Church Boolean:

equal = λm. λn.
and (isZero (m prd n))
(isZero (n prd m))

𝑚 prd 𝑛 ≈ “applying the predecessor function for 𝑚 times on 𝑛”
≈ “m minus n”
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Y-combinator & recursion



How do we represent recursion?
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Ω-combinator

Definition
The divergent combinator Ω is:

Ω = (𝜆𝑥. 𝑥 𝑥) (𝜆𝑥. 𝑥 𝑥)

Let’s try to 𝛽-reduce Ω:

(𝜆𝑥. 𝑥 𝑥) (𝜆𝑥. 𝑥 𝑥) → (𝑥 𝑥) [ 𝑥 ≔ (𝜆𝑥. 𝑥 𝑥) ]
→ (𝜆𝑥. 𝑥 𝑥) (𝜆𝑥. 𝑥 𝑥)

We get what we started with!

A 𝜆-term is divergent if it has no 𝛽-normal form.
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Y-combinator

Definition
The fixpoint combinator is the term

Y = 𝜆𝑓. (𝜆𝑥. 𝑓 (𝑥 𝑥)) (𝜆𝑥. 𝑓 (𝑥 𝑥))

Y 𝐹 = (𝜆𝑓. (𝜆𝑥. 𝑓 (𝑥 𝑥)) (𝜆𝑥. 𝑓 (𝑥 𝑥))) 𝐹

→ (𝜆𝑥. 𝐹 (𝑥 𝑥)) (𝜆𝑥. 𝐹 (𝑥 𝑥))

→ 𝐹 ( (𝜆𝑥. 𝐹 (𝑥 𝑥)) (𝜆𝑥. 𝐹 (𝑥 𝑥))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Y 𝐹

)

→ 𝐹 (Y 𝐹)
Say that Y 𝐹 is a fixed point of the function 𝐹 :

Y 𝐹 = 𝐹 (Y 𝐹)
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Y-combinator

We can use Y to achieve recursive calls to 𝐹 :

Y 𝐹 = 𝐹 (Y 𝐹)
= 𝐹 (𝐹 (Y 𝐹))
= …
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Factorial

Definition
Using Church numerals, we define the factorial function as:

fact = 𝜆𝑓. 𝜆𝑛. if isZero 𝑛 then 𝑐1
else times 𝑛 (𝑓 (prd 𝑛))

where 𝑛 ∈ ℕ & 𝑓 is the function to call in the body
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Factorial (cont.)

Use Y to achieve recursive calls to fact:
(Y fact) 𝑐1 = (fact (Y fact)) 𝑐1

→ if equal 𝑐1 𝑐0 then 𝑐1 else times 𝑐1 ((Y fact) 𝑐0)

→ times 𝑐1 ((Y fact) 𝑐0)

→ times 𝑐1 (fact (Y fact) 𝑐0)

→ times 𝑐1 (if equal 𝑐0 𝑐0 then 𝑐1

else times 𝑐0 ((Y fact) (prd 𝑐0)))

→ times 𝑐1 𝑐1
→ 𝑐1
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Factorial (cont.)

Instead of using the Y-combinator, we can also define factorial using
the U-combinator. (see appendix)
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Scott encodings



Scott encodings

Consider the following algebraic data types in Haskell:

data Nat = Zero | Succ Nat
data List a = Nil | Cons a (List a)

Scott encodings allow us to encode ADTs as 𝜆-terms.
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Scott numerals

Definition

zero = 𝜆𝑧. 𝜆𝑠. 𝑧
scc = 𝜆𝑛. 𝜆𝑧. 𝜆𝑠. 𝑠 𝑛

Intuition: Arguments distinguish between different cases
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Church vs Scott numerals

How do the Church & Scott encodings differ?

Church Scott

zero = 𝜆𝑠. 𝜆𝑧. 𝑧 zero = 𝜆𝑧. 𝜆𝑠. 𝑧

scc = 𝜆𝑛. 𝜆𝑠. 𝜆𝑧. 𝑠 (𝑛 𝑠 𝑧) scc = 𝜆𝑛. 𝜆𝑧. 𝜆𝑠. 𝑠 𝑛
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Church vs Scott numerals

Church Scott

scc = 𝜆𝑛. 𝜆𝑠. 𝜆𝑧. 𝑠 (𝑛 𝑠 𝑧) scc = 𝜆𝑛. 𝜆𝑧. 𝜆𝑠. 𝑠 𝑛

folds
continuation threaded throughout structure

case analysis
continuation unwraps one layer only
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Church vs Scott numerals

Church Scott

𝜆𝑠. 𝜆𝑧. 𝑧
𝜆𝑠. 𝜆𝑧. 𝑠 𝑧
𝜆𝑠. 𝜆𝑧. 𝑠 (𝑠 𝑧)
𝜆𝑠. 𝜆𝑧. 𝑠 (𝑠 (𝑠 𝑧))

𝜆𝑧. 𝜆𝑠. 𝑧
𝜆𝑧. 𝜆𝑠. 𝑠 (𝜆𝑠. 𝜆𝑧. 𝑧)
𝜆𝑧. 𝜆𝑠. 𝑠 (𝜆𝑠. 𝜆𝑧. 𝑠 (𝜆𝑠. 𝜆𝑧. 𝑧))
𝜆𝑧. 𝜆𝑠. 𝑠 (𝜆𝑠. 𝜆𝑧. 𝑠 (𝜆𝑠. 𝜆𝑧. 𝑠 (𝜆𝑠. 𝜆𝑧.𝑧)))

“apply s, iterated n times” “apply s on the preceding Scott numeral”
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Church vs Scott encodings: Predecessor

Church: 𝑂(𝑛) Scott: 𝑂(1)

prd = 𝜆𝑚. fst (𝑚 ss zz)
where zz = pair 𝑐0 𝑐0

ss = 𝜆𝑝. pair (snd 𝑝)
(plus 𝑐1 (snd 𝑝))

prd = 𝜆𝑛. 𝑛 zero (𝜆𝑝. 𝑝)

Predecessor can be expressed more succintly using Scott encodings!
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Church encoding for lists

Definition

nil = 𝜆𝑛. 𝜆𝑐. 𝑛
cons = 𝜆𝑥. 𝜆𝑙. 𝜆𝑛. 𝜆 𝑐. 𝑐 𝑥 (𝑙 𝑛 𝑐)

(akin to foldr)

x ≈ “head”
l ≈ “tail”
n ≈ case for nil
c ≈ case for cons
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Church encoding for lists (cont.)

Definition

nil = 𝜆𝑛. 𝜆𝑐. 𝑛
cons = 𝜆𝑥. 𝜆𝑙. 𝜆𝑛. 𝜆 𝑐. 𝑐 𝑥 (𝑙 𝑛 𝑐)

(akin to foldr)

Example:

𝑥 ∶ 𝑦 ∶ 𝑧 ∶ [] ≈ 𝜆𝑐. 𝜆𝑛. (𝑐 𝑥 (𝑐 𝑦 (𝑐 𝑧 𝑛)))
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Scott encoding for lists

Definition

nil = 𝜆𝑛. 𝜆𝑐. 𝑛
cons = 𝜆𝑥. 𝜆𝑙. 𝜆𝑛. 𝜆𝑐. 𝑐 𝑥 𝑙

x ≈ “head”
l ≈ “tail”
n ≈ case for nil
c ≈ case for cons
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Church vs Scott lists

Church Scott

cons = 𝜆𝑥. 𝜆𝑙. 𝜆𝑛. 𝜆 𝑐. 𝑐 𝑥 (𝑙 𝑛 𝑐)
cons = 𝜆𝑥. 𝜆𝑙. 𝜆𝑛. 𝜆𝑐. 𝑐 𝑥 𝑙

(much simpler!)

x ≈ “head”
l ≈ “tail”
n ≈ case for nil
c ≈ case for cons
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Church vs Scott encodings

• Encodings only differ for recursive datatypes

• Church: defines how functions should be folded over an
element of the type

• Scott: uses “case analysis”, recursion not immediately visible
• Simpler representation (for certain functions)
• Y-combinator needed for other operations

Further reading:
Jansen (2013), Programming in the 𝜆-Calculus: From Church to Scott and Back
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Appendix: Defining factorial using the U-combinator

Instead of using the Y-combinator, we can also define factorial
using the U-combinator.

Definition
The U-combinator applies its argument 𝑓 to itself:

U = 𝜆𝑓. 𝑓 𝑓



Appendix: Defining factorial using the U-combinator

Recall the definition of factorial:

fact = 𝜆𝑓. 𝜆𝑛. if equal 𝑛 𝑐0 then 𝑐1
else times 𝑛 (𝑓 (prd 𝑛))

We can define factorial using U as follows:

fact = U (𝜆𝑓. 𝜆𝑛. if isZero 𝑛 then 𝑐1

else times 𝑛 (U 𝑓 (prd 𝑛)))

See this link for worked examples

https://stackoverflow.com/questions/46820404/non-recursive-lambda-calculus-factorial-function
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Appendix: More on the U-combinator

It turns out that we can define Y using U:

U = 𝜆𝑓. 𝑓 𝑓

Y = 𝜆𝑔. U (𝜆𝑓. 𝑔 (U 𝑓))

→ 𝜆𝑔. U (𝜆𝑓. 𝑔 (𝑓 𝑓))

→ 𝜆𝑔. (𝜆𝑓. 𝑔 (𝑓 𝑓)) (𝜆𝑓. 𝑔 (𝑓 𝑓))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
definition of Y we saw on slide 32

(up to 𝛼-equivalence)

Back to main presentation



Appendix: CBV vs CBN

• Call-by-value (CBV): only reduce outermost redexex, and given
an application (𝜆𝑥. 𝑒1) 𝑒2, make sure 𝑒2 is a value before
applying the abstraction

• Reduce a redex only when its RHS has already been reduced to a
value

• Call-by-name (CBN): Reduce the leftmost, outermost redex first,
but we don’t allow reductions inside abstractions

• TAPL & these slides both use CBV.

Back to main presentation
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