
Differential Privacy in Streaming & Cloud Computation

Kavish Shah, Ernest Ng

December 27, 2022

Contents

1 Abstract 2

2 Preliminaries 2
2.1 Differential Privacy basics . 2
2.2 Elementary DP Properties . 3
2.3 Data Streams . 4
2.4 Adjacency in Data Streams . 4
2.5 k-wise Independent Hash Functions . 4

3 Theoretical Results 5
3.1 Pan-Privacy . 5

3.1.1 Pan Private Density Estimation . 5
3.2 Sketch Algorithms . 7

3.2.1 Laplace mechanism for sketches . 7
3.2.2 Distinct Count Estimation using sketch algorithms . 8

3.3 Adversarially Robust Streaming Algorithms . 8
3.3.1 Existing work . 8
3.3.2 Adversarial Robust Streaming via Differential Privacy . 9

3.4 Continual observation . 10
3.4.1 Binary Mechanism (Chan et al.) . 10
3.4.2 Cascading Buffers Counter (Dwork) . 11

4 Applications & Implementations 12
4.1 Airavat (Differential Privacy for MapReduce) . 12

4.1.1 MapReduce . 12
4.1.2 Architecture of Airavat . 12
4.1.3 How Airavat enforces differential privacy . 13

4.2 Programming Frameworks for Differentially Private Stream Queries 13
4.2.1 Streaming PINQ . 13
4.2.2 Related work . 14
4.2.3 Attacks on Differential Privacy . 14

4.3 Private Hadamard Count Mean Sketch (Apple) . 14

5 Conclusion and Open Problems 16
5.1 Open problems . 16
5.2 Addendum . 16

1

1 Abstract

Differential Privacy (DP) has gained widespread attention in recent years as a tool for ensuring data protection
in a variety of settings. In this survey, we examine the literature on differentially private algorithms in stream
processing and cloud computation settings. We begin by reviewing key definitions regarding differential
privacy. We then discuss notions such as pan-privacy and continual observation which are necessary for
the study of DP in stream processing. Next, we consider sketch algorithms, which allow for the efficient
processing of large datasets while preserving privacy, as well how DP can be achieved in adversarially robust
streaming algorithms. Finally, we review various programming frameworks for achieving DP in streaming
and MapReduce computations, and discuss several open problems that remain in this field.

2 Preliminaries

2.1 Differential Privacy basics

The aim of differential privacy is to ensure that removing one record from a database results in a limited
impact on the result of any statistical analysis performed over said database. Adjacent databases are defined as
databases which are identical except for one particular data entry. Consider two databases D1 and D2 which
differ by one element, such that one is a proper subset of the other and the larger database contains just one
additional row. The following definition is due to Dwork et al. [9]:

Definition 1. A randomized function K is ε-differentially private if for all databases D1 and D2 differing by
at most one element, and all S ⊆ Range(K), we have that:

Pr[K (D1) ∈ S] ≤ exp(ε)×Pr[K (D2) ∈ S]

The probability is taken is over the coin tosses (internal randomization) of K.

The intuition for this definition is that for any particular individual, the inclusion or exclusion of their datum
should not significantly impact the output of the computation performed by K. This gives a sense of plausible
deniability because no third party can infer whether a particular individual was a part of the dataset purely
by examining the output for the computation. Note that ε is a parameter dictating the strength of the privacy
guarantees, where smaller values of ε represent stronger privacy.

Event-level and User-level privacy
Note that a single user can have multiple distinct entries in the stream or no entries at all. This raises two types
of privacy risks. First is an event-level risk where the outputs from the algorithm could reveal if a particular
user has a specific entry in the stream. The second type of risk is that the output would reveal if the user has
an entry in the data stream or not, which is called user-level risk.

The following example highlights the need for both event-level and user-level privacy.

1.) Suppose we wish to monitor the incidence of a disease in a population. If users were to report their
symptoms to a disease self-assessment website, we wish to ensure event-level privacy, i.e. we wish to hide the
presence / absence of a single event (the user’s visit to the website).

2.) Suppose we are monitoring search queries in a medical search engine. Here we want user-level privacy
(ensuring that all search queries from a single user are protected).

Global Sensitivity
The global sensitivity of a function f is the maximum change in the output due to a single change in the input
dataset. Dwork et al. [11] formally define the global sensitivity as follows:

Definition 2. For f :D→ Rd , the global sensitivity of f is

GSf = max
D,D ′

∥∥∥f (D)− f (D ′)
∥∥∥

1

for all neighboring data sets D and D ′ .

Laplace Mechanism
The Laplace mechanism works by adding noise to the results of a statistical analysis sampled form of a Laplace
distribution. This is a unimodal distribution centered at zero and is characterized by its scale parameter b,
which determines the amount of noise added to the results. The Laplace probability distribution Lap(b) has
probability density function f (x) = 1

2b exp
(
− |x|b

)
, where x ∈ R. The following result due to Roth & Dwork [10]

demonstrates how the Laplace mechanism can guarantee ε-differential privacy:

2

Theorem 1 (Laplace mechanism [11]). Let f : X∗ → R be a sensitivity ℓ function. The mechanism that on
input S ∈ X∗ returns

f (S) + Lap
(
ℓ
ε

)
achieves ε-differential privacy.

2.2 Elementary DP Properties

We first present several elementary results from the DP literature regarding the composition of DP algorithms.

Composition & Post-Processing:
Let x denote a database (collection of records), whose records originate from some universe X . Following
the canonical statements of composition theorems in the DP literature [10], we represent a database by its
histogram, i.e. we have x ∈ N|X |, where each component of the tuple x denotes the no. of occurrences of some
xi ∈ X in the database x.

We first note that we can compose differentially-private algorithms in a manner such that the privacy loss is
controlled, using the following theorem:

Theorem 2 (Composition, Theorem 3.14 from [10]). Let M1 : N|X | → R1 be an ε1-differentially private
algorithm, and let M2 : N|X | → R2 be an ε2-differentially private algorithm. Then their composition M1,2 :
N|X |→ R1 ×R2, defined as M1,2(x) := (M1(x),M2(x)) is (ε1 + ε2)-differentially private.

Now, given a computational graph composed of k different differentially private computations, repeatedly
application of the composition theorem above gives us the following result regarding the privacy of the overall
computation:

Theorem 3 (Corollary 3.15 from [10]). Suppose mechanisms Ki , i ∈ [r] each provide εi-differential privacy.
Then, the overall mechanism K consisting of the composition of these r mechanisms is

(∑
i∈[r] εi

)
-differentially

private.

We also note that differential privacy is preserved under post-processing via a data-independent mapping f :

Theorem 4 (Post-Processing, Proposition 2.1 from [10]). Let M : N|X |→ R be a randomized algorithm that
is ε-differentially private. Let f : R→ R′ be any arbitrary randomized mapping.
Then f ◦M : N|X |→ R′ is ε-differentially private.

Generalization properties:
Stemmer [26] discusses the generalization properties of DP, which are used by Hassidim et al’s design of
adversarially robust streaming algorithms [18], discussed in section 3.3.

Let D be some distribution over the universe X , and let h : X → {0,1} be some predicate. Let S ∼ Dn be some
sample consisting of n elements drawn i.i.d from D. Then, using Chernoff-Hoeffding bounds, we know that
with high probability, the empirical average of h on S is close to the expectation of h(x) where x is drawn from
D (from [26]), that is:

with high probability,
1
|S |

∑
x∈S

h(x) ≈ Ex∼D[h(x)]

Now, suppose A : X n → 2X is any arbitrary algorithm that takes a sample S ∼ Dn and outputs a predicate
h←A(S). Stemmer [26] states that in general, we cannot claim that the empirical average of h on S is close to
expectation of h, since the algorithm A could just naively return the predicate that returns 1 only when x ∈ S
and overfit on the sample S.

However, it turns out that if A is a differentially private algorithm, then we can conclude that with high
probability, the empirical average of h on S will be close to the expectation of h over D, thanks to the following
result discussed by Hassidim et al. [18]:

Theorem 5 (Generalization properties of DP). Let A : X n → 2X be an ε-differentially private algorithm
that returns a predicate h : X → {0,1}. Let D be a distribution over X and let S be a sample consisting of n i.i.d
elements drawn from D. Let h←A(S) be the predicate obtained by running algorithm A on the sample S.
Then, with high probability, we have that:

1
|S |

∑
x∈S

h(x) ≈ Ex∼D[h(x)]

3

2.3 Data Streams

Below, we adopt the notation for data streams used by Mir et al. [23]. Suppose data records originate from
a universe U , where |U | = m. An update is defined as an ordered pair (i,d) ∈ U ×Z. Consider a semi-infinite
sequence of updates (i1,d1) , (i2,d2) , . . .; the input for all our algorithms consists of the first t updates, denoted
St = (i1,d1) , . . . , (it ,dt). Here, ij ∈ [n] refers to the jth element and dj ∈ Z is the weight. The state after t updates
is an m-dimensional vector a(t), indexed by the elements in U (we will omit the superscript when it is clear
from the context). The elements of the vector a = a(t), referred to as the state vector, are defined as follows:

ai =
∑
j:ij=i

dj

Note that, di could be either positive or negative. If di ≥ 0, the model is called a cash register model (or
insertion-only model), whereas if there is no restriction on di , it is called a turnstile model.

2.4 Adjacency in Data Streams

If we want to establish differential privacy guarantees on data streams, we will need to establish a notion
of adjacency. Two streams can be considered adjacent if the entries corresponding to a particular user are
replaced and everything else remains the same. This is formally defined in [23] as follows:
Consider two online updates S = {(i1,d1) , . . . , (it ,dt)} and S ′ =

{(
i′1,d

′
1

)
, . . . ,

(
i′t′ ,d

′
t′

)}
associated with state vectors

a and a′ respectively.

Definition 3. S and S ′ are said to be neighbors if there exists a (multi)set of updates in S indexed by K ⊆ [t]
that update the same ID i ∈ U , and there exists a (multi)set of updates in S ′ indexed by K ′ ⊆ [t′] that updates
some j(, i) ∈ U such that

∑
k∈K dk =

∑
k∈K ′ d

′
k and for all other updates in S and S ′ indexed by Q = [t]−K and

Q′ = [t′]−K ′ respectively,
∀i ∈ U

∑
k∈Q, s.t. ik=i

dk =
∑

k∈Q′ , s.t.

∑
i′k=i

d′k

Note that in the definition above, t and t′ do not necessarily have to be equal since we allow the di ’s to be
integers. This definition implies that if we swap out all entries of one particular user in S with entries of some
other user and call the resultant stream S ′ , then S and S ′ are considered adjacent streams (neighbors). We
allow t and t′ to be different because the update weights can be broken up into multiple updates or combined
into one.

2.5 k-wise Independent Hash Functions

The literature on differentially private stream algorithms often feature the use of k-wise independent hash
functions as a way of hashing data records. Here we provide the definition of such functions:

Definition 4. A k-wise independent hash function h : [1..m]→ [1..T] is a randomized function where, for
any k distinct elements j1, . . . , jk ∈ [1..m] and any k possible values t1, . . . , tk ∈ [1..T], we have that:

Pr[h(ji) = ti] =
1
T k

for all i

where the probability is over the randomization of the function h.

The significance of k-wise independent hash functions is that they can be stored with relatively small space,
providing space complexity gains [24]. For example, for prime T , consider the function h : [1..m] → [1..T]
given by:

h(j) = (a · j + b) mod T

where a,b are chosen independently and uniformly at random from [1..T].

One can show that this function is indeed a 2-wise (pairwise) independent hash function by finding distinct
j, j ′ ∈ [1...m] where j , j ′ such that h(j) = s and h(j ′) = s′ , for some fixed but arbitrary s, s′ ∈ [1..T]. This is
analogous to solving the two following equations simultaneously:a · j + b = s mod T

a · j ′ + b = s′ mod T

Using canonical results from abstract algebra, we know that if T is prime, then Z/TZ is a field. Then,
expressing the two equations above as a linear system over the finite field Z/TZ and solving for a and b using

4

linear-algebraic techniques, we see that there exist unique a∗,b∗ ∈ [1..T] satisfying the above two equations.
Then, by independence, since a,b are chosen uniformly at random from [1..T], the joint probability of the
event that h(j) = s and h(j ′) = s is given by:

Pr
[
h(j) = s∧ h(j ′) = s′

]
= Pr[a = a∗ ∧ b = b∗] =

1
T 2

This shows that h is indeed a 2-wise independent hash function. Note that this 2-wise independent hash
function only requires O(logT) space to store. This is because we only need to remember a,b ∈ [1..T] to
compute the hashed value above, and storing the random seed (a,b) as a binary string requires O(logT) bits
[21]. 1 Analogously, one can show that any k-wise independent hash function requires O(k logT) space to
store. Such a function can be a polynomial of degree k with coefficients chosen independently and uniformly
at random and from [1..T], from which we take its value modulo T [24].

3 Theoretical Results

3.1 Pan-Privacy

Note that the internal state of a streaming algorithm may contain information about the updates from a specific
time interval. Ideally, we would like to provide privacy guarantees against intrusions, for example when the
algorithm’s internal state is exposed to an adversary, or a subpoena entails the disclosure of the algorithm’s
internal state.

Pan-private algorithms aim to ensure differential privacy even when the internal state of the algorithm is
exposed via an intrusion. Additionally, pan-privacy protects against situations of mission creep where data
collected for one purpose is used for another purpose [10].

The following definition of user-level pan-privacy is due to Dwork & Roth [23]:

Definition 5. Say that an algorithm Alg mapping data stream prefixes to I×σ is pan-private against a single
intrusion if for all subsets I ′ ⊆ I of internal algorithm states & all subsets σ ′ ⊆ σ of output sequences, as well
for all pairs S,S ′ of adjacent data-stream prefixes, we have that:

Pr
[
Alg(S) ∈ (I ′ ,σ ′)

]
≤ eε Pr

[
Alg(S) ∈ (I ′ ,σ ′)

]
where the probability is taken over the internal coin flips (randomization) of the algorithm Alg.

This definition assumes that the adversary can observe internal states in I and output sequences in σ , but it
cannot see the individual data records in the stream. However, the adversary may have auxiliary knowledge
about the data obtained from other sources. Additionally, the adversary has arbitrary computational power.

One should also note that this definition refers only to one single intrusion. If there are multiple (unannounced)
intrusions, we need to consider the different ways in which the observations of internal algorithm states and
output sequences can be interleaved.

In the following section, we discuss the problem of pan-private density estimation and illustrate how pan-privacy
can be achieved.

3.1.1 Pan Private Density Estimation

The problem of density estimation is as follows: Given a universe X of data records and a data stream σ , we
wish to estimate the fraction of items in X which appear at least once in σ . Dwork et al. propose a density
estimation algorithm, which aims for user-level privacy [13]. The challenge of density estimation is that the
algorithm has to maintain information regarding items’ previous appearances, without the algorithm’s internal
state leaking significant information about the appearance or absence of individual items.

Note that a stream is a sample of the universe X (with replacement). Thus, we can can sample a random set
M ⊆ X consisting of m items, where m is sufficiently large such that with high probability, the density of M’s
items in the data stream approximate the density of X’s items.

Then, we maintain a table, with one entry per item in M. For each item x ∈M that is absent from the stream,
its corresponding table entry is drawn from a distribution D0(ε) over {0,1}. For items that have appeared at
least once in the stream, their entry is drawn from another distributionD1(ε) over {0,1} regardless of the item’s
no. of appearances.

1Unless otherwise stated, all logarithms discussed in this document are base-2 logarithms. That is, we write log(n) to denote log2(n).

5

The two distributions D0(ε) and D1(ε) are defined as follows:

D0(ε) =

0 w.p. 1
2

1 w.p. 1
2

D1(ε) =

1 w.p. 1
2 + ε

4
0 w.p. 1

2 −
ε
4

Then, the algorithm computes θ, the fraction of entries in the table with value 1 (call these entries 1-entries).
Lastly, the algorithm outputs the density value f ′ defined as follows:

f ′ =
4(θ − 1

2)
ε

+ Lap
(1
εm

)
We now discuss the intuition for this algorithm’s privacy and correctness. Since we re-draw an item x’s entry
from D1(ε) whenever x appears in the data stream, the distribution of x’s entry is unaffected by its no. of
appearances in the stream (beyond the first appearance). This means that the entry corresponding to x does
not yield any information about the no. of times x occured in the stream.

Dwork et al. show that for ε ≤ 1/2, the two distributions D0(ε) and D1(ε) are ε-differentially private, i.e.
sufficiently close to each other [13]. We formalize this intuition using the following lemma:

Lemma 1 (Theorem 3.1 in [13]). For ε ≤ 1/2, the distributions D0 and D1 are ε-differentially private. That is,
for both values b ∈ {0,1}, we have that:

e−ε ≤
PrD1

[b]
PrD0

[b]
≤ eε

Proof. We first examine the ratio of the probability weight of 1 in the distributions D0 and D1, and note that
for any 0 ≤ ε ≤ 1/2, we have that:

PrD1
[1]

PrD0
[1]

= 1 +
ε
2
≤ eε

Similarly, the ratio of the probability weights of 0 in D0 and D1 is:

PrD1
[0]

PrD0
[0]

= 1− ε
2
≤ eε

Together, the above two inequalities demonstrate ε-differential privacy.

Dwork et al. then present the following result regarding this algorithm’s privacy and accuracy:

Theorem 6. The density estimation algorithm ensures 2ε-differential pan-privacy for ε ≤ 1/2. For a fixed
input, with probability 1 − β over the algorithm’s internal randomization, the algorithm’s output is α-close to
the fraction of items in X that appear in the data stream. The algorithm uses space poly(1/ε,1/α, log(1/β)).

Proof Sketch Here we provide a sketch of the proof (we refer the reader to [13] for the complete proof). We
know that ε is chosen such the two distributions D0 and D1 are sufficiently close to each other. This means
that users in M are guaranteed ε-differential privacy. Moreover, the users not in M enjoy full privacy as they
do not appear in the algorithm’s internal state. These two findings ensure that the algorithm’s internal state
remains private.

Now, when the algorithm generates its output, the sensitivity of this output to the presence/absence of any
user is at most 1

m if the user is in M, or 0 if the user isn’t in M. Moreover, we can achieve ε-differential privacy
for the output by adding noise sampled from the Laplace distribution. Thus, by composition theorems, the
entire computation achieves 2ε-differential privacy.

We set the size of our sample M to be m = poly(1/α, log(1/β)). Using Chernoff bounds, we can establish that
with high probability, most of the items that appear atleast once in the stream also appear atleast once in the
sample M. Next, we use Chernoff bounds again to show that the empirical fraction f ′ of 1-entries in the table
contributed via draws from D1 is close to the true fraction f of 1-entries in the table. This leads to a bound on
the error for the density in the form |f − f ′ | ≤ α.

Extensions The density estimation algorithm can be extended to provide multiplicative errors and to handle
multiple announced intrusions. To obtain a multiplicative error, Dwork et al. [13] propose hashing via 4-wise
independent hash functions (see section 2.5). The authors hash the universe X into a chain of l = log |X | smaller
sets

X0 ⊂ X1 ⊂ . . . ⊂ Xl = X

6

where |Xi | = 2i . Then, the density estimation algorithm is run independently for each Xi (each with its own
choice of m) with noise drawn from Lap

(
l

ε·m

)
in the output step. An appropriate output is then chosen

from the l outputs, and examining the choice of hash function via Chebyshev’s inequality yields the desired
multiplicative error term [13].

Handling multiple intrusions We have shown that the density of a stream can be estimated in a pan-private
way for a single unannounced intrusion. To handle multiple announced intrusions, the algorithm re-randomizes
the aforementioned distributions in order to inject new noise and maintain privacy.

However, two unannounced intrusions are far more challenging to tackle. Dwork et al. [13] demonstrate how
the threat of multiple intrusions forces the algorithm to behave in a way where it cannot distinguish between
a stream containing just one element repeated for the entire stream, and a stream which contains individual
elements for a large time period and then just contains one elements repeated for the rest of the stream.

3.2 Sketch Algorithms

Sketch algorithms are a class of algorithms that are used to process and analyze large datasets in a privacy-preserving
manner. They work by creating a “sketch” (summary) of the data that retains certain key properties of the
original dataset. These sketches can then be used to estimate various statistics without revealing sensitive
information about the individual data. In this section, we first present several definitions regarding sketch
vectors, discuss the Laplace mechanism for sketches and lastly explore how sketch algorithms can be used for
distinct count estimation over streams.

The following definition of a sketch vector is due to Mir et al. [23]:

Definition 6. Let X be a matrix of random values of dimension m× r, where each entry of the matrix Xi,j ,1 ≤
i ≤ m, and 1 ≤ j ≤ r, is drawn independently from a random stable distribution with parameter p, with p as
small as possible. The sketch vector sk(a) is defined as the dot product of matrix XT with a, so

sk(a)j =
m∑
i=1

Xi,jai = Xj · a

where Xj is a m-dimensional vector composed of the following elements:
(
X1,j ,X2,j , . . .Xm,j

)
.

To elucidate the definition above, we also present the following definition of a p-stable distribution, also due
to Mir et al. [23]:

Definition 7. A distribution P over R is said to be p-stable, if there exists p ≥ 0 such that for any n real
numbers b1, . . . ,bm and i.i.d. variables Y1, . . . ,Ym with distribution P , the random variable

∑
i biYi has the same

distribution as the random variable (
∑

i |bi |p)1/p Y , where Y is a random variable with distribution P .

Stable distributions are a class of probability distributions that are defined by a set of specific mathematical
properties, including the fact that the mean of the distribution is stable over time. The parameter p is used to
describe the degree of stability of the mean of the distribution. A distribution with a high value of p will have
a more stable mean, while a distribution with a low value of p will have a less stable mean.

Updating the sketch vector Starting from the null vector, for each update encountered in the data stream,
the sketch vector is updated as follows:

∀j ∈ [r] : sk(a)j ← sk(a)j + dkXi,j

Here, the Xi,j are values drawn from a p-stable distribution parameterized by r1, r2,p where r1, r2 are random
numbers obtained from a pseudorandom generator. The p-stable distribution is then defined as:

stable (1/2 +θ,r2,p) =
sinpθ

cos1/pθ

(
cos(θ(1− p))
− lnr2

) 1−p
p

3.2.1 Laplace mechanism for sketches

Sensitivity of a sketch Let a and a′ be internal states of a sketch algorithm corresponding to two adjacent
data streams S and S ′ (see definition 3). Mir et al. [23] demonstrate that for any S and S ′ , the following
inequality can be obtained:∥∥∥Xj · a−Xj · a′

∥∥∥
1
≤

∣∣∣Xi,jai −Xi,ja
′
i +Xk,jak −Xk,ja

′
k

∣∣∣ ≤ 2 ·Z
∥∥∥Xj

∥∥∥∞
7

This inequality demonstrates that the global sensitivity of a sketch sk(a)j is:

GSj = 2 ·Z
∥∥∥Xj

∥∥∥∞
We need to add Laplacian noise based on this sensitivity value in order to have a differentially private description
of the algorithm’s internal state at any point. The Laplacian distribution used will have mean 0 and scaling
factor of GSj /ε, where ε is the privacy parameter.

3.2.2 Distinct Count Estimation using sketch algorithms

We now show that it is possible to count the number of occurrences of elements in a stream using a sketch
algorithm. Mathematically, the distinct count of a stream is defined as:

D(t) =
{
i
∣∣∣∣ a(t)

i , 0
}

Now, recall that the Lp norm of a vector x is defined as ∥x∥p := (Σi |ai |p)1/p. Then, using results from Cormode
et al. [8], the distinct count can be estimated using the following expression for sufficiently small p:

D(t) ≤
∑
i

|ai |p ≤ (1 + ε)D(t)

Using p-stable distributions, we can calculate the Lp norm to then estimate the distinct count.

Mir et al.’s algorithm involves updating the sketch vector sk(a)j by adding noisy samples of the data records
dt at every time step t. The algorithm then takes a median of the sketch and scales it appropriately. Mir et al.
[23] provide the following bound on the distinct count estimate:

Theorem 7. With probability 1 − (r + 1)δ, Algorithm 1 computes an α′-pan-private approximation D̃ of D(t)

such that

(1− ε)D(t) −O
(
poly

(
log(m) · (1 + ε) log

(1
δ

) 1
α′

))
≤ D̃ ≤ (1 + ε)D(t) +O

(
poly

(
log(m) · (1 + ε) log

(1
δ

) 1
α′

))
We refer the reader to [23] for the full proof.

3.3 Adversarially Robust Streaming Algorithms

3.3.1 Existing work

Most of the streaming algorithms we have seen so far focus on the oblivious setting, i.e. they assume that the
entire stream is fixed in advance (and is just fed to the algorithm one item at a time), or that the choice of items
in the stream is independent of the internal state and the internal randomization of the algorithm.

In this section, we focus on the setting where the items in the stream and the queries fed to the algorithm are
chosen by an adaptive adversary. That is, every item in the stream and each query is chosen by the adversary,
and is a function of the previous stream items, the previous queries and the algorithm’s previous answers.
This means that the items in the stream are not independent of the algorithm’s internal state. In this setting,
oblivious stream algorithms do not provide any meaningful guarantees on their utility (since the stream items
are no longer independent of the algorithm’s previous answers). Instead, one would like to design adversarially
robust streaming algorithms that maintain (provable) accuracy against adaptive adversaries.

There is a game-theoretic statement of this adversarial streaming model due to Hassidim et al. [18]: Consider
a two-player game between a randomized StreamingAlgorithm and an Adversary. Fix a function g. Then
proceed in rounds, where in the i-th round:

1. The Adversary chooses an update ui for the stream, which can depend on all previous stream updates
and the StreamingAlgorithm’s output

2. StreamingAlgorithm processes the new update ui and outputs a response zi

The Adversary’s goal is to make the StreamingAlgorithm output an incorrect response zi for some time step
i ∈ [1..m], where m is the length of the stream.

The above game-theoretic statement is helpful for understanding the challenges of making streaming algorithms
adversarially robust, some of which we highlight below. Hardt & Woodruff [17] show that no randomized
linear sketch algorithm can be made adversarially robust. Moreover, Stemmer [26] points out that while
deterministic streaming algorithms are adversarially robust, many streaming algorithms must be randomized

8

in order for the space complexity to not be linear in the length of the stream. For example, given a stream
of length m, Alon, Matias & Szegedy [1] showed that to estimate the second moment F2 of a stream, any
deterministic streaming algorithm must use Ω(m) space, whereas a randomized algorithm can use O(α−2 logm)
space for some error parameter α. Stemmer [26] remarks that the challenge posed by the above adversarial
streaming model is that over time, the adversary can learn the internal randomness of the algorithm and
force the algorithm to become deterministic, resulting in a space blowup. This result demonstrates that
randomization for stream algorithms is necessary in order for the space complexity to be sublinear in the
stream length.

3.3.2 Adversarial Robust Streaming via Differential Privacy

Most of the results discussed in the previous section are impossibility results. However, Hassidim et al. [18]
demonstrate how differential privacy can be used to design new adversarially robust streaming algorithms,
providing constructive results.

Let X be the universe from which data records x in the stream originate. Let g : X → R be a mapping from
stream data records to some real value. For example, g may count the no. of distinct elements in the stream.
Now, consider an oblivious (randomized) streaming algorithm A that computes g.

Hassidim et al. [18] present an algorithm RobustSketch which takes A and makes it adversarially robust,
providing accuracy guarantees within a multiplicative error of 1±α for some error parameter α.

The construction of RobustSketch is as follows: We first initialize k copies A1, . . . ,Ak of algorithm A with
a collection R of k random strings (seeds), and feeds the stream data to all k copies of A. Then, as each
element ui in the data stream arrives, ui is fed to each of A1, . . . ,Ak as an input, yielding results yi,1, . . . , yi,k .
RobustSketch then outputs zi = PrivateMedian(yi,1, . . . , yi,k), where PrivateMedian is a canonical ε-differentially
private algorithm for computing the median (see Algorithm 9 in [10]).

Hassidim et al. claim that RobustSketch is differentially private with respect to the collection of random
strings R, and that for the algorithm’s outputs for each u⃗i are accurate within a multiplicative error of 1±α of
g(u⃗i) [18].

The intuition for the proof is thus: Let u⃗i = (u1, . . . ,ui) denote the first i elements in the stream. Let A(r, u⃗i)
denote the output of algorithmAwhen it is initialized with the random seed r and executed on stream u⃗i after
the arrival of the i-th stream element. Then, consider the following function:

fu⃗i (r) := 1
{

(1−α)g(u⃗i) ≤ A(r, u⃗i) ≤ (1 +α)g(u⃗i)
}

Here, fu⃗i is the indicator function which is 1 if A(r, u⃗i) is approximately equal to g(u⃗i) within a multiplicative
error of 1±α, and 0 otherwise.

Note that zi is the median of yi,1, . . . , yi,k , which is computed in a differentially private manner with respect
to the collection R of random strings. Moreover, the adversary chooses the stream element ui s a function
of RobustSketch’s previous outputs zi−1, zi−2, Now, since the post-processing of a differentially-private
computation preserves privacy (Theorem 4), it follows that the updates in the stream u⃗i are the result of a
differentially private computation, where the privacy is with respect to R. It follows that fu⃗i is also the result
of a differentially-private computation on R.

Then, by the generalization properties of differential privacy (Theorem 5), it follows that:

1
k

k∑
j=1

fu⃗i (rj) ≈ Er [fu⃗i (r)]

Let us consider the LHS and RHS of this expression separately. As Stemmer [26] points out, Er [fu⃗i (r)] is the
success probability of the randomized oblivious algorithm A in the classical setting, where the random seed r
is independent of the stream u⃗i . (Here, the success probability refers to the probability of A returning some
value g(u⃗i) which is accurate to within a multiplicative error of 1±α.) This means that Er [fu⃗i (r)] ≈ 1.

Now, the LHS 1
k

∑k
j=1 fu⃗i (rj) represents the fraction of yi,1, . . . , yi,k which are accurate to g(u⃗i) within the aforementioned

9

multiplicative error. This means that:

1
k

k∑
j=1

1
{
yi,j is accurate w.r.t g(u⃗i) within a multiplicative error of 1±α

}
≈ 1

k

k∑
j=1

fu⃗i (rj)

≈ Er [fu⃗i (r)]

≈ 1

Since most of the yi,j ’s are at most a factor of 1±α away from g(u⃗i), it follows that the (approximate) median
of the yi,j ’s also lies within the same range and is also accurate within the aforementioned multiplicative error.
This establishes the accuracy of RobustSketch.

Hassidim et al.’s main contributions to the adversarial streaming litearture are to demonstrate how differential
privacy can be used to hide a streaming algorithm’s internal randomness from the adversary, and how the
generalization properties of DP allow for accuracy guarantees.

3.4 Continual observation

Now, consider scenarios in which we need to continuously produce some output based on the data stream.
Consider an input stream over {0,1}, where 1 indicates the presence of some event of interest, and for each
time t = 1, . . . ,T , the algorithm outputs the no. of 1s seen in the stream for the first t time steps.

Let S,S ′ be finite stream prefixes of symbols from the universe of input symbols X . We define a notation of
adjacency for stream prefixes:

Definition 8. S is X -adjacent to S ′ if and only if there exist a,b ∈ X such that if we change some instances of
a in S to instances in b, we get S ′ as a result.
Writing Adj(S,S ′) to denote the predicate that S and S ′ are adjacent stream prefixes, we have that:

Adj(S,S ′)⇐⇒ ∃ a,b ∈ X , ∃R ⊆ [1..|S |] s.t. S |R:a→b = S ′

where R is a subset of indices in the stream prefix S, and S |R:a→b denotes replacing all occurrences of a in the set
of indices R with b.

Event-level privacy corresponds to the case when |R| ≤ 1. User-level privacy corresponds to any generic R
where |R| is not constrained.

3.4.1 Binary Mechanism (Chan et al.)

One common statistic computed by streaming algorithms is the count of certain items in the stream. For
this section, we will follow the terminology used by Chan et al. [5] and define p-sums to be a partial sum of
consecutive items in a data stream.

Chan et al. describe a mechanism for computing noisy p-sums that ensure differential privacy. The name
“Binary Mechanism” is due to the mechanism’s use of the binary representation of the stream length T .

Suppose T ∈ N is a power of 2. Then, construct a complete binary tree with T leaves, where each of the T
leaves is labelled 1 through T from left to right. (Here, each leaf represents a different time step.)

Then, each successive parent is labelled with an (integer) interval that represents the union of its children’s
intervals. For example, given a parent node with children labelled 1 and 2 respectively, the parent node would
be labelled with the interval [1,2]. (See figure 1)

The aim of this mechanism is to release a noisy-count for each interval [s, t], i.e. a noisy count for the no. of 1s
from time steps s, s+ 1, . . . , t. To do this, we utilize the binary representation of t as follows:

Given a number t ∈ N, let Bini(t) ∈ {0,1} denote the i-th digit in the binary representation of t, where Bin0(t)
denotes the least significant bit of t. Note that t =

∑
i Bini(t) · 2i . Then, it follows that if the i-th binary digit

Bini(t) = 1, then there exists a p-sum consisting of 2i items.

The intuition of Chan et al’s Binary Mechanism is thus: instead of releasing the counts for a particular time
step t, the mechanism releases a sequence of noisy p-sums, from which one can estimate the count at time t.

To do this, the mechanism produces a p-sum corresponding to each node in the labelled binary tree, with
random noise drawn from Lap

(log(T)
ε

)
. Then, to recover the sum of the no. of 1s in the stream between time

steps 1 and T , it suffices for one to find a set of at most log(T) nodes corresponding to disjoint sub-intervals of

10

Figure 1: Binary tree used in Chan et al.’s Binary Mechanism [5]

[1..T] (where the union of the corresponding intervals is [1..T]), and compute the sum of the associated noisy
p-sums.

We now discuss the intuition for how this mechanism ensures that the count is differentially private. Note
that each time step t ∈ [1..T] appears in O(logT) p-sums, and any sub-interval of [1..T] can be represented
with O(logT) nodes for which the union of the corresponding intervals is [1..T]. Moreover, since each of the
O(logT) p-sums is subject to (independent) Laplace noise Lap

(logT
ε

)
, it follows that at time t, the error of the

mechanism is the sum of O(logT) i.i.d. Laplace distributions Lap
(logT

ε

)
. This ensures that each intermediate

p-sum (the algorithm’s internal state) as well as the algorithm’s output remains differentially private.

Notably, this mechanism involves adding noise to the intermediate p-sums prior to computing the overall
count, rather than after counting (as one would typically expect). As noted in [10], thanks to the commutativity
of addition, this design does not affect the mechanism’s outputs.

However, as Roth points out in [10], this mechanism does not satisfy pan-privacy against one single intrusion.
Suppose an intruder were to see the algorithm’s internal state and the values of the data stream from time a
to t. Moreover, suppose the intruder wishes to learn xt+1, and they have access to the count emitted by the
algorithm after some time interval I = [a,b] where a ≤ t < t+1 ≤ b. Then, the intruder could just take the count
emitted by the algorithm at time b and subtract xa,xa+1, . . . ,xt . This would allow the intruder to learn the value
of the count at time b after it has been subjected to some Laplacian noise. Then, subtracting the contribution of
elements from time [a,b] allows the intruder to learn xt+1. This vulnerability demonstrates how the algorithm
does not satisfy pan-privacy.

The detailed proof of this mechanism’s utility and privacy involves various lemmas regarding the summation
of i.i.d. Laplace random variables and their moment generating functions. We refer the reader to [5] for the
full proof.

Chan et al. generalize the Binary Mechanism to support multi-dimensional range queries, for example SQL
queries over relational databases (evolving with time) of the form:
SELECT COUNT(∗)WHERE age > 50 AND salary > 10K AND time added <= t

The idea behind this generalization involves representing the multi-dimensional query into the Cartesian
product of 1-dimensional intervals, applying the Binary Mechanism above to compute a noisy p-sum specific
to each dimension and aggregating the one-dimensional p-sums.

3.4.2 Cascading Buffers Counter (Dwork)

Dwork [9] discusses another approach to obtaining the count of stream elements, which involves the use of a
counter primitive.

One naive approach to creating a counter is as follows: given data record xt ∈ {0,1} at time t, increment the
output (total count) by xt + Lap(1/ε). It is clear that this approach satisfies event-level pan privacy, by virtue
of the fact that the algorithm does not remember the value of xt in its internal state.

However, Dwork points out that for sufficiently large t, the total amount of noise added to the output via this
naive approach is O(

√
t/ε). This amount of noise can be problematic for sparse data streams where the no. of 1s

is less than
√
t, since the output count will be dominated by the accumulated noise. Thus, the naive approach

leaves much to be desired in terms of its accuracy.

11

To handle sparse streams, Dwork proposes a cascading buffer counter which achieves only poly-logarithmic
error with respect to the length of the stream prefix. The key insight of this algorithm is the use of d internal
buffers b1, . . . , bd which are periodically flushed (reset to 0) once some buffer threshold l is reached. That is, each
buffer maintains a privacy-preserving approximation of the no. of 1s in the stream since the last flush.

Each buffer bi also has an associated accumulator ai that keeps track of the exact no. of 1s in the stream
since the last flush. When a buffer bi is flushed, the algorithm updates the output count by ai + Lap(1/ε) and
subsequently re-initializes ai with noise Lap(1/ε). (Here, the Laplacian noise added to each accumulator is
independent of other accumulators.)

The use of buffers and accumulators reduce the frequency at which the algorithm updates its output count,
preventing the algorithm’s update frequency from disclosing the density of 1s in the stream. Moreover, thanks
to the Laplacian noise added to the accumulator, the magnitude of each update to the output count is also
made private. (Announced intrusions can also be dealt with by flushing the accumulators and buffers after
each intrusion.)

Moreover, the d levels of buffers control the granularity of updates to the output count, as the algorithm
recursively increments each layer of buffers and keeps track of the no. of updates ui for each buffer bi . When
ui exceeds some threshold (i.e. one buffer has been updated excessively since the last flush), buffer bi is also
flushed. Intuitively, this design ensures that the algorithm can also maintain privacy and accuracy for dense
streams with a high no. of 1s.

Dwork demonstrates how because each of the d accumulators is initialized with independent noise from
Lap(1/ε), and because a stream data record xt is added to the first buffer with similar Laplacian noise, each
accumulator maintains dε-differential privacy. Thus, the internal state of the algorithm is ((d+1)ε)-differentially
event-level pan private. Moreover, since the output counter is only incremented by the accumulator value
when a buffer is flushed and the d accumulators are reset with noise Lap(1/ε) after every buffer flush, each
update to the output count incurs a privacy loss dε. The cascading buffer counter thus achieves ((2d +
1)ε)-differential privacy and is event-level pan-private.

Dwork subsequently demonstrates this algorithm’s accuracy by bounding the no. of updates to the output
counter and the discrepancy between each buffer’s approximation of the count with the true no. of 1s in
the stream. Furthermore, Dwork demonstrates how the event-level private cascading buffer counter can be
used to transform the density estimation algorithm discussed in section into a user-level pan-private density
estimation for continuous observation purposes. We refer the reader to [9] for a detailed discussion of this
process.

4 Applications & Implementations

4.1 Airavat (Differential Privacy for MapReduce)

4.1.1 MapReduce

MapReduce is a distributed computation framework that has become popular in recent years for big data
applications. In the MapReduce framework, input files from a distributed file system are split into chunks.
Each chunk is assigned to a mapper that reads the data, performs some computation, and outputs a list of (key,
value) pairs. Then, reducers combine the value belonging to each distinct key [25]. In the literature, the two
functions handling these two processes are respectively called map and reduce. These two functions can be
customized to perform a wide variety of tasks over large datasets, such as counting the frequency of items or
applying Boolean predicates. The MapReduce framework ensures that the execution of mappers and reducers
is fault-tolerant, with their execution scheduled in parallel across nodes within a distributed system.

4.1.2 Architecture of Airavat

Airavat is a system that allows for differential privacy in MapReduce computations. Airavat uses the MapReduce
framework with Apache Hadoop’s distributed file system (HDFS) and the Java Virtual Machine (JVM), where
SELinux is the underlying operating system. Airavat uses the JVM’s Mandatory Access Control mechanisms
(MAC) to enforce access privileges to the file system.

To use Airavat, a data provider specifies the privacy budget and desired privacy parameter ε for the dataset,
and a comptuation provider (the user performing a query) writes code according to the MapReduce paradigm.
Airavat assumes that the adversary is a malicious computation provider who has full control over the code for
the mapper supplied to Airavat’s MapReduce mechanism.

12

4.1.3 How Airavat enforces differential privacy

A malicious adversary can potentially use keys to extract information about the input. For this purpose,
Airavat never outputs any keys produced by untrusted mappers. Instead, the computation provider submits
a list of keys and Airavat returns noisy values associated with those keys. To return noisy values, the reducers
add exponentially distributed noise to the output of the computation, with the amount of noise determined
by the sensitivity of the computation.

The computation provider must also specify the range of output values (Mmin,Mmax) that the mapper can
produce. Airavat uses this range to estimate the sensitivty of the function and to determine the appropriate
amount of noise that should be added such that the perturbed value remains within the desired range. If
the mapper outputs a value outside the range, the range enforcer replaces it with a value inside the range.
The creators of Airavat note that this design “prioritizes privacy over accuracy” [25], and that accurate results
from MapReduce computations using Airavat can only be obtained if the computation provider knows the
sensitivity of their computation beforehand [25].

Airavat is also equipped with a range enforcer, which checks that the value within each (key, value) pair
produced by the mapper lies within the declared range. This ensures that the sensitivity of the computation
doesn’t exceed the estimated sensitivity. This also means that if the user doesn’t provide a good range of
outputs the out put can end up being too noise and non-interpretable.

Airavat also defines specific behavior for the mappers. Mappers have to be independent, and only a single
input record is allowed to affect the (key, value) pairs output by the mapper. The mapper is also prohibited
from storing the (key, value) pairs produced from an input record for later use. Moreover, multiple mappers
M1, . . . ,Mj can be composed, followed by a final reducer Rj which adds noise to the final computation result.
To attenuate the reduction in the privacy budget, the computation provider can specify the max no. of keys n
that each mapper can output, such that Airavat only passes n (key, value) pairs between successive mappers.

Airavat can also ensure group privacy, i.e. privacy for a user which has multiple entries or a group of users.
Airavat attaches group IDs to (key, value) pairs to track the dispersal of information from each input privacy
group through intermediate keys to the output.

One limitation of Airavat is that it cannot confine the computations that are performed by untrusted code that
the computation provider submits to the mapper. Specifically, privacy cannot be guaranteed for untrusted
mapper code which perform computations that can disclose the value of intermediate keys (since such keys
originate from the dataset) [25]. Instead, for MapReduce computations that require keys to be output, the
computation provider is required to declare keys in advance.

4.2 Programming Frameworks for Differentially Private Stream Queries

4.2.1 Streaming PINQ

Proposed in 2010 by McSherry [22], PINQ (Privacy Integrated Queries) is a programming platform which
supports differentially-private database queries in the C# language. Waye [30] extended PINQ to support
differentially private queries over streams, providing extensible interfaces for both data providers and data
analysts.

Notably, Waye’s implementation of Streaming PINQ distinguishes between user-level and event-level privacy
as per Dwork et al.’s definitions (discussed in section 3.1). An abstract base class PINQStreamingAgent is
implemented, with subclasses PINQUserLevelAgent and PINQEventLevelAgent that enforce user-level and
event-level privacy respectively. These two agent subclasses determine whether a streaming algorithm is able
to receive events from the stream, and control the resultant loss in the privacy budget. To ensure ε-event
level differential privacy, PINQEventLevelAgent ensures that at most ε is learned for each event, and after the
current streaming algorithm finishes, PINQEventLevelAgent allows subsequent streaming algorithms run with
the initial privacy budget – note that this functionality is disallowed by PINQUserLevelAgent since user-level
privacy is defined over the entire stream.

However, Streaming PINQ does not dynamically check the code of a streaming algorithm to verify the algorithms’
advertised privacy guarantees. The functionality offered by Streaming PINQ is mainly focused on keeping
track of the loss in the privacy budget and controlling streaming algorithms’ access to the stream.

Additionally, Streaming PINQ accepts arbitrary SQL-esque logical predicates written in C#, and adversaries
could take advantage of this vulnerability to discover information about the private data. For example, Waye
discusses an example where an adversary could execute a very long loop when an element in the stream
satisfies a predicate [30]. It is also worth noting that while Waye implements several DP algorithms in

13

Streaming PINQ (eg. randomized response count), the timestamps at which events are processed are exposed,
which may not be ideal for time-sensitive data such as stock trades.

4.2.2 Related work

Haeberlen, Pierce and Narayan developed a functional language Fuzz equipped with a type system that
guarantees differential privacy [15]. At a high level, this is achieved by via a special type db in Fuzz that
represents a static database. Through static analysis, the Fuzz typechecker ensures that any database queries
cannot return type db, and that queries must add noise to any values returned that are primitive data types (eg.
integers, strings). However, Fuzz does not support time-evolving data or data streams, and it remains unclear
how Fuzz’s type system could be extended to support data streams [30].

The MapReduce-based system Airavat (section 4.1.2) for differentially private cloud computing is based off
the Hadoop framework, which is most typically used for batch processing instead of streaming. Although
there exists a Hadoop Streaming utility within the Hadoop framework, this utility should not be confused with
computation frameworks such as Spark Streaming that process unbounded data streams. (As discussed in [2],
the “streams” in Hadoop Streaming refer to standard Unix streams such as stdin and stdout.)

4.2.3 Attacks on Differential Privacy

Haeberlen, Pierce & Narayan showed that PINQ and Airavat are both susceptible to timing attacks [15]. In this
setting, an adversary submits a query that pauses for a long time if a record satisfying a predicate exists. Since
the distribution of query execution times change drastically when a record of interest is encountered, this is a
violation of differential privacy. The creators of Airavat are cognizant of this vulnerability but state that only
a small no. of bits an be transmitted to the adversary as a result of this limitation [25].

PINQ is also susceptible to privacy budget attacks. In this setting, an adversary exploits the query processor’s
decision whether to disclose the result of a computation to identify whether the query contains private data
[15]. This attack exploits the dynamic analysis performed by PINQ that determines whether a query results
in any remaining privacy budget. In this setting, an adversary could compute the difference in the privacy
budget before and after running a query to determine whether a record satisfying a predicate is returned by
the query. Notably, Airavat is not susceptible to this attack as it deducts the appropriate amount from the
privacy budget prior to executing the query [15].

4.3 Private Hadamard Count Mean Sketch (Apple)

Another example of how differentially private stream algorithms have been used in industry can be found at
Apple, who use the Private Hadamard Count Mean Sketch algorithm to compute counts in user data streams.
(One such example is finding the most commonly used emoji among iOS users.) Apple’s construction is based
on a variant of the Count-Min sketch matrix, which is a probabilistic data structure defined below [7]:

Definition 9. A Count-Min sketchmatrix CM is a w×d matrix where each entry is initialized to 0. Moreover,
d pairwise-independent hash functions h1, . . . ,hd , are chosen from a universal hash family. (The domain of each
of these hash functions is the domain of the stream data, and the codomain is [1..w].)
Then, for each update (it ,dt) in the stream, we update the matrix as follows:

for all j ∈ [1..d], set CM[j,hj (it)]← CM[j,hj (it)] + dt

(Note that each hash function hi indexes into a different row of the matrix CM.)

In Apple’s construction, for each data record arriving in the stream, a hash function h : D → [1..m] is selected
uniformly at random from a family of 3-wise independent hash functions {h1, . . . ,hd}. 2 This hashed function
is used to encode the data record as a m-dimensional one-hot encoded vector. Then, to ensure differential
privacy, each bit in the hashed vector representation of the stream data record is flipped with probability
1/(1 + eε/2), where ε is the privacy parameter.

The privatized vector v and the index of the (randomly) selected hash function is then sent to a server, which
updates a Count-Min sketch matrix M of size d ×m according to the definition above. (Here, the no. of rows
d in the matrix M is the same as the no. of hash functions, and the no. of columns m is equal to the size of
the privatised vector transmitted to the server.) Then, to compute the frequency (count) of a data record x, for
each j ∈ [1..d], the algorithm computes the mean of all matrix entries M[j,hj (x)].

2See section 2.5 for a definition on k-wise independent hash functions.

14

Note that for large d and m, the cost of transmitting the privatized vector to the server to construct the sketch
matrix may be prohibitively high. To circumvent this issue without sacrificing accuracy, Apple utilises the
Hadamard transform, which is defined below:

Definition 10. For l ∈ N where l is a power of 2, the Hadamard transform matrix is a l × l matrix Hl defined
recursively, where:

H1 = [1]

Hl =
[
Hl/2 Hl/2
Hl/2 −Hl/2

]
The privatised vector v is left-multiplied by the Hadamard transform matrix Hm to obtain v′ = Hmv, where
v′ ∈ {±1}m. Then, one component of the vector v′ is chosen uniformly at random, and this bit is flipped with
probability 1/(1 + eε/2). This single bit and its corresponding index (along with the index of the randomly
chosen hash function) is then transmitted to the server. The server then populates the Count-Min sketch
matrix M as before, and performs an inverse Hadamard transform to obtain the original basis for M.

Surprisingly, despite transmitting only one single privatised bit from the client to the server, accurate counts
can still be computed using Apple’s algorithm. We refer the reader to [28] for the detailed proof of this
algorithm’s utility and differential privacy, which rely on statistical properties of the estimators derived from
the entries of the resultant matrix M.

Figure 2: Apple’s Private Hadamard Count Mean Sketch algorithm [29]

To identify users’ most commonly used emojis, Apple uses a universal hash family consisting of d = 65,536
different 3-wise independent hash functions, with the privatised vectors having size m = 1024, and the privacy
parameter set to ε = 4 [29]. Personal identifiable information such as IP addresses and user identifiers are
stripped from the stream data, and the communication between the client (user device) and the server is
encrypted using TLS [28].

Apple’s deployment of differential privacy is markedly different from the previous programming frameworks
explored in this survey. Note that while Airavat, Streaming PINQ and Fuzz are generic-purpose programming
frameworks that accept user-defined queries and aim to enforce differential privacy, Apple’s use of Count
Mean Sketch is specifically used for computing aggregate statistics over user data streams.

Tang et al. reverse-engineered Apple’s aforementioned DP mechanism for macOS and found that each user’s

15

privacy budget is renewed every day. We refer the reader to their work [27] for a critique of the implementation
of Apple’s DP mechanisms.

5 Conclusion and Open Problems

We have examined various problems related to differential privacy in stream processing settings, ranging from
pan-privacy to continual observation. We also examine sketch and adversarial streaming algorithms, as well
as various programming frameworks for DP in stream processing. In this concluding section, we begin by
discussing a few open problems in the literature on DP for stream processing.

5.1 Open problems

Open problems in continual observation
Chan et al. [5] discuss how the aforementioned counting mechanisms can be used for recommendation systems
that continuously generate the top k suggestions for visitors to websites. Moreover, Bolot et al. [3] extend
Dwork’s model of continual observation and propose algorithms for estimating statistics over sliding windows
and time-decayed streams where more recent items are prioritsed over older items. This work is related to
that of Chen et al. [6], who propose algorithms that can support multiple streaming processing tasks (eg. event
monitoring and sliding windows) over different resolutions of the same data stream. Furthermore, Cardoso &
Rogers [4] generalize Dwork et al. and Chan et al’s continual observation models (discussed in section 3.4) to
settings where each event in the data stream is a subset of an unknown universe of items. Additionally, Jain et
al. [19] focus on online convex programming algorithms and discuss methods for transforming them into DP
variants while achieving sublinear regret.

However, many of these algorithms ensure only event-level differential privacy, i.e. protecting the privacy of
one single event (eg. concealing one instance of user’s interaction with a website). One could argue that
sensitive information is disclosed from multiple events that occur in succession. To this end, Kellaris et al. [20]
define a new notion of w-event privacy, which concerns the privacy of contiguous event sequences that occur
in w successive periods. Kellaris et al. implement variants of canonical DP algorithms that ensure w-event
privacy.

Achieving user-level differential privacy for continual observation problems remains an open problem due to
the stronger privacy guarantees needed for user-level privacy. In fact, Dwork et al. [12] demonstrate that
for stream processing algorithms that aggregate the advice of multiple experts, it is impossible to obtain any
non-trivial result while preserving user level privacy.

Clustering problems
Har-Peled and Mazumdar [16] define the notion of coresets (weighted sets of points in Rd), which can be
used to derive streaming equivalents of clustering algorithms such as k-means clustering. Here, the data
stream consists of points in Rd which are successively added to a subset P ⊆ Rd . Feldman et al. [14] present
differentially-private algorithms for computing coresets for k-means and k-median clustering in streaming
settings.

5.2 Addendum

Lastly, we conclude this survey with a few thoughts on sketching algorithms and pan-privacy for MapReduce.

Sketch algorithms Non-sketching pan private algorithms generally use sampling and adaptive randomized
response techniques. On the other hand, sketching algorithms maintain random “sketches” of the data, i.e.
linear projections of data along random directions. Dwork et al. [13] show that multi-party sketch algorithms
would not be suitable for building pan-private algorithms. This is because in a multi-party system, the
algorithm’s correctness requirement would cause some participant to disclose information that would allow
one to guess the correct input with non-trivial probability, thus violating differential privacy. However, Mir et
al. [23] show that there is a method to use single-party sketch algorithms to build pan-private algorithms. This
result demonstrates the utility of sketch algorithms for private computation. Traditional sketch algorithms
already have randomness built into them, so they can be made pan-private using the Laplace mechanism and
other differentially-private techniques.

Pan-Privacy for MapReduce We saw in section 4.1.2 that Roy et al.’s Airavat framework allowed for differentially
private queries to be implemented using the MapReduce framework [25]. Airavat introduces the use of
Mandatory Access Control mechanisms (MACs) for ensuring private distributed computation. We saw how

16

MACs in tandem with Airavat’s various enforcing mechanisms prevent the internal state of algorithms from
being disclosed. This is in some sense similar to what pan-privacy is trying to achieve in an algorithmic
manner. Perhaps one day, pan-private algorithms could be integrated into the MapReduce framework to
create an Airavat-esque platform without the need for MACs.

References
[1] Noga Alon, Yossi Matias, and Mario Szegedy. “The Space Complexity of Approximating the Frequency

Moments”. In: Journal of Computer and System Sciences 58.1 (1999), pp. 137–147. issn: 0022-0000. doi:
https://doi.org/10.1006/jcss.1997.1545. url: https://www.sciencedirect.com/science/article/pii/
S0022000097915452.

[2] Benjamin Bengfort and Jenny Kim. Data Analytics with Hadoop. O’Reilly Media, Inc., 2016, p. 43.
[3] Jean Bolot et al. “Private Decayed Sum Estimation under Continual Observation”. In: CoRR abs/1108.6123

(2011). arXiv: 1108.6123. url: http://arxiv.org/abs/1108.6123.
[4] Adrian Rivera Cardoso and Ryan Rogers. “Differentially Private Histograms under Continual Observation:

Streaming Selection into the Unknown”. In: CoRR abs/2103.16787 (2021). arXiv: 2103.16787. url: https:
//arxiv.org/abs/2103.16787.

[5] Hubert Chan, Elaine Shi, and Dawn Song. “Private and Continual Release of Statistics”. In: ACM Transactions
on Information and System Security (2010).

[6] Yan Chen et al. “PeGaSus: Data-Adaptive Differentially Private Stream Processing”. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security. CCS ’17. Dallas, Texas, USA:
Association for Computing Machinery, 2017, 1375–1388. isbn: 9781450349468. doi: 10.1145/3133956.
3134102. url: https://doi.org/10.1145/3133956.3134102.

[7] Graham Cormode. Count-Min Sketch. http://dimacs.rutgers.edu/∼graham/pubs/papers/cmencyc.pdf.
[8] Graham Cormode et al. “Comparing Data Streams Using Hamming Norms (How to Zero In)”. In:

Proceedings of the 28th International Conference on Very Large Data Bases. VLDB ’02. Hong Kong: VLDB
Endowment, 2002, 335–345.

[9] Cynthia Dwork. “Differential Privacy in New Settings”. In: Symposium on Discrete Algorithms (SODA).
Society for Industrial and Applied Mathematics, 2010. url: https : / / www. microsoft . com / en - us /
research/publication/differential-privacy-in-new-settings/.

[10] Cynthia Dwork and Aaron Roth. “The Algorithmic Foundations of Differential Privacy”. In: Foundational
Trends in Theoretical Computer Science 9.3–4 (2014), 211–407. issn: 1551-305X. doi: 10.1561/0400000042.
url: https://doi.org/10.1561/0400000042.

[11] Cynthia Dwork et al. “Calibrating Noise to Sensitivity in Private Data Analysis”. In: Theory of Cryptography.
Ed. by Shai Halevi and Tal Rabin. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 265–284.
isbn: 978-3-540-32732-5.

[12] Cynthia Dwork et al. “Differential Privacy under Continual Observation”. In: Proceedings of the Forty-Second
ACM Symposium on Theory of Computing. STOC ’10. Cambridge, Massachusetts, USA: Association for
Computing Machinery, 2010, 715–724. isbn: 9781450300506. doi: 10 . 1145 / 1806689 . 1806787. url:
https://doi.org/10.1145/1806689.1806787.

[13] Cynthia Dwork et al. “Pan-Private Streaming Algorithms”. In: Innovations in Computer Science - ICS
2010, Tsinghua University, Beijing, China, January 5-7, 2010. Proceedings. Ed. by Andrew Chi-Chih Yao.
Tsinghua University Press, 2010, pp. 66–80. url: http://conference. iiis . tsinghua.edu.cn/ICS2010/
content/papers/6.html.

[14] Dan Feldman et al. “Private Coresets”. In: Proceedings of the Forty-First Annual ACM Symposium on
Theory of Computing. STOC ’09. Bethesda, MD, USA: Association for Computing Machinery, 2009, 361–370.
isbn: 9781605585062. doi: 10.1145/1536414.1536465. url: https://doi.org/10.1145/1536414.1536465.

[15] Andreas Haeberlen, Benjamin C. Pierce, and Arjun Narayan. “Differential Privacy under Fire”. In: Proceedings
of the 20th USENIX Conference on Security. SEC’11. San Francisco, CA: USENIX Association, 2011, p. 33.

[16] Sariel Har-Peled and Soham Mazumdar. “Coresets for k-Means and k-Median Clustering and their
Applications”. In: CoRR abs/1810.12826 (2018). arXiv: 1810.12826. url: http://arxiv.org/abs/1810.
12826.

[17] Moritz Hardt and David P. Woodruff. “How Robust are Linear Sketches to Adaptive Inputs?” In: CoRR
abs/1211.1056 (2012). arXiv: 1211.1056. url: http://arxiv.org/abs/1211.1056.

[18] Avinatan Hassidim et al. “Adversarially Robust Streaming Algorithms via Differential Privacy”. In:
CoRR abs/2004.05975 (2020). arXiv: 2004.05975. url: https://arxiv.org/abs/2004.05975.

[19] Prateek Jain, Pravesh Kothari, and Abhradeep Thakurta. “Differentially Private Online Learning”. In:
CoRR abs/1109.0105 (2011). arXiv: 1109.0105. url: http://arxiv.org/abs/1109.0105.

17

https://doi.org/https://doi.org/10.1006/jcss.1997.1545
https://www.sciencedirect.com/science/article/pii/S0022000097915452
https://www.sciencedirect.com/science/article/pii/S0022000097915452
https://arxiv.org/abs/1108.6123
http://arxiv.org/abs/1108.6123
https://arxiv.org/abs/2103.16787
https://arxiv.org/abs/2103.16787
https://arxiv.org/abs/2103.16787
https://doi.org/10.1145/3133956.3134102
https://doi.org/10.1145/3133956.3134102
https://doi.org/10.1145/3133956.3134102
http://dimacs.rutgers.edu/~graham/pubs/papers/cmencyc.pdf
https://www.microsoft.com/en-us/research/publication/differential-privacy-in-new-settings/
https://www.microsoft.com/en-us/research/publication/differential-privacy-in-new-settings/
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://doi.org/10.1145/1806689.1806787
https://doi.org/10.1145/1806689.1806787
http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/6.html
http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/6.html
https://doi.org/10.1145/1536414.1536465
https://doi.org/10.1145/1536414.1536465
https://arxiv.org/abs/1810.12826
http://arxiv.org/abs/1810.12826
http://arxiv.org/abs/1810.12826
https://arxiv.org/abs/1211.1056
http://arxiv.org/abs/1211.1056
https://arxiv.org/abs/2004.05975
https://arxiv.org/abs/2004.05975
https://arxiv.org/abs/1109.0105
http://arxiv.org/abs/1109.0105

[20] Georgios Kellaris et al. “Differentially Private Event Sequences over Infinite Streams”. In: Proc. VLDB
Endow. 7.12 (2014), 1155–1166. issn: 2150-8097. doi: 10.14778/2732977.2732989. url: https://doi.org/
10.14778/2732977.2732989.

[21] Shachar Lovett. Constructions of pairwise independent variables. https://cseweb.ucsd.edu/classes/fa13/
cse290-b/notes-lecture2.pdf. 2013.

[22] Frank D. McSherry. “Privacy Integrated Queries: An Extensible Platform for Privacy-Preserving Data
Analysis”. In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’09. Providence, Rhode Island, USA: Association for Computing Machinery, 2009, 19–30. isbn:
9781605585512. doi: 10.1145/1559845.1559850. url: https://doi.org/10.1145/1559845.1559850.

[23] Darakhshan J. Mir et al. “Pan-private Algorithms: When Memory Does Not Help”. In: CoRR abs/1009.1544
(2010). arXiv: 1009.1544. url: http://arxiv.org/abs/1009.1544.

[24] Aleksander Madry. CS-621 (Theory Gems) Lecture 17: Lp norm estimation problem. 2012.
[25] Indrajit Roy et al. “Airavat: Security and Privacy for MapReduce”. In: Symposium on Networked Systems

Design and Implementation (NSDI). USENIX - Advanced Computing Systems Association, 2010. url:
https : / / www. microsoft . com / en - us / research / publication / airavat - security - and - privacy - for-
mapreduce/.

[26] Uri Stemmer. Adversarial Streaming, Differential Privacy, and Adaptive Data Analysis. 2021. url: https:
//www.youtube.com/watch?v=Whu-6lVYFXc (visited on 12/25/2022).

[27] Jun Tang et al. “Privacy Loss in Apple’s Implementation of Differential Privacy on MacOS 10.12”. In:
CoRR abs/1709.02753 (2017). arXiv: 1709.02753. url: http://arxiv.org/abs/1709.02753.

[28] Apple Differential Privacy Team. Learning with Privacy at Scale (article). https://docs-assets.developer.
apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf. 2017.

[29] Apple Differential Privacy Team. Learning with Privacy at Scale (blog post). https://machinelearning.
apple.com/research/learning-with-privacy-at-scale. 2017.

[30] Lucas Waye. “Privacy Integrated Data Stream Queries”. In: Proceedings of the 2014 International Workshop
on Privacy Security in Programming. PSP ’14. Portland, Oregon, USA: Association for Computing Machinery,
2014, 19–26. isbn: 9781450322966. doi: 10.1145/2687148.2687150. url: https://doi.org/10.1145/
2687148.2687150.

18

https://doi.org/10.14778/2732977.2732989
https://doi.org/10.14778/2732977.2732989
https://doi.org/10.14778/2732977.2732989
https://cseweb.ucsd.edu/classes/fa13/cse290-b/notes-lecture2.pdf
https://cseweb.ucsd.edu/classes/fa13/cse290-b/notes-lecture2.pdf
https://doi.org/10.1145/1559845.1559850
https://doi.org/10.1145/1559845.1559850
https://arxiv.org/abs/1009.1544
http://arxiv.org/abs/1009.1544
https://www.microsoft.com/en-us/research/publication/airavat-security-and-privacy-for-mapreduce/
https://www.microsoft.com/en-us/research/publication/airavat-security-and-privacy-for-mapreduce/
https://www.youtube.com/watch?v=Whu-6lVYFXc
https://www.youtube.com/watch?v=Whu-6lVYFXc
https://arxiv.org/abs/1709.02753
http://arxiv.org/abs/1709.02753
https://docs-assets.developer.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf
https://docs-assets.developer.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf
https://machinelearning.apple.com/research/learning-with-privacy-at-scale
https://machinelearning.apple.com/research/learning-with-privacy-at-scale
https://doi.org/10.1145/2687148.2687150
https://doi.org/10.1145/2687148.2687150
https://doi.org/10.1145/2687148.2687150

	Abstract
	Preliminaries
	Differential Privacy basics
	Elementary DP Properties
	Data Streams
	Adjacency in Data Streams
	k-wise Independent Hash Functions

	Theoretical Results
	Pan-Privacy
	Pan Private Density Estimation

	Sketch Algorithms
	Laplace mechanism for sketches
	Distinct Count Estimation using sketch algorithms

	Adversarially Robust Streaming Algorithms
	Existing work
	Adversarial Robust Streaming via Differential Privacy

	Continual observation
	Binary Mechanism (Chan et al.)
	Cascading Buffers Counter (Dwork)

	Applications & Implementations
	Airavat (Differential Privacy for MapReduce)
	MapReduce
	Architecture of Airavat
	How Airavat enforces differential privacy

	Programming Frameworks for Differentially Private Stream Queries
	Streaming PINQ
	Related work
	Attacks on Differential Privacy

	Private Hadamard Count Mean Sketch (Apple)

	Conclusion and Open Problems
	Open problems
	Addendum

