deiivalives 0/
regular expressions

ernest ng & laura zielinski

Regular Expressions

Inductive re :
Void : re
Epsilon : re
Atom : char — re

Union : re = re — re
Concat : re — re — re
Star : re — re.

a*+ b > Union (Star (Atom a)) (Atom b)

Matching a String (list char)

Inductive matches : re — string — Prop :=
matches_epsilon : matches Epsilon []
matches _atom a : matches (Atom a) [a]
matches union_ 1 rl r2 s :

matches rl1 s — matches (Union rl r2) s

matches (Union (Star (Atom a)) (Atom b)) [‘a’;
matches (Union (Star (Atom a)) (Atom b)) [‘b’;

‘a
‘a

' L]
?

']

‘a
X

']

N

The Brzozowski Derivative

Oc(T)

...returns a regex which matches “the rest of the string” after matching c, e.g.

b der (r : re) (c : char) : re

dclc-a-t)=a-t
op(a*-b+Db)=¢

Matching Using the Brzozowski Derivative

Oapp(a - %) = dpp(q(a - b*))

= 5bb(b*) — 5b(5b<b*>)
= §y(b) = b*

b* matches “” = (a - b*) matches “abb”

Matching Using the Brzozowski Derivative

(** isEmpty returns true iff r matches the empty string %)

Definition b_matches (r : re) (s : string) : bool :=
isEmpty (fold left b_der s r).

Lemma b_matches _matches (r : re) (s : string) :
b _matches r s = true ¢«— matches r s.

Blowing Up

Saaa(@*(a +D)(a+b)(a+ b))
= faa(a*(a +D)(a+b)(a+b)+(a+0b)a+b))
= da(a*(a +b)° + (a+b)*+ (a+1D))

= (a*(a+0)°+ (a+b)*+ (a+b)+e¢)

The Antimirov Derivative

Fixpoint a_der (r : re) (c : char) : gset re +~— CVC(T>

...returns a set of regexes, one of which matches “the rest of the string” after
matching c, e.g.

acc-a-t+c-o-w)={a-t,o-w}
ag(a* - (a+b)°) = {a*- (a+b)°, (a+b)*)}

T

“partial derivative”

Matching Using the Antimirov Derivative

(** a_der _set applies a der pointwise to elements in a set *)
(** nullable returns true iff some regex in the set matches the
empty string *)

Definition a_matches (r : re) (s : string) : bool :=
nullable (fold left a der_set s {[r]}).

Antimirov < Brzozowski

Theorem a_b_matches : forall (r : re) (s : string),
a_matches r s ¢ b_matches r s.

Finitude

author = {Brzozowski, Janusz A.},
title = {Derivatives of Regular Expressions},
year = {1964}

TaeoreMm 5.2. FKvery regular expression has only a finite nuwmber of dissimilar
derwatives.

Proor. The proof is given in Appendix II. As a consequence of this resuls, a
state diagram can be constructed even if only similarity among the derialives 13
recognazed.

Finitude

(** All possible partial derivatives (maybe more) *)
Fixpoint A _der (r : re) : gset re :=

match r with

| void => {[Void]}

(** gsets are finite *)
Theorem a_finite : forall (r : re) (s : string),
a_der _str r s & A der r.

Viewing Regexes as Trees

Union (Star (Atom a)) a*+(a-b)
(Concat (Atom a) (Atom b))

Union

T

Star Concat

| N

Atom a Atom a Atom b

Size & Height of Derivatives
Michael Greenberg proved that:

1. V r c. height 6c(r) < 2 % height r

2. No constant bounds the size increase of
Brzozowski derivatives

(size & height are defined wrt the regex AST)

Our aim: Prove similar results for Antimirov!

(So far, we've proven (1) holds for the max height of all terms contained in
the set of Antimirov derivatives)

(JFP 1997)

Zippers: Background FUNCTIONAL PEARL

The Zipper

Purely functional data structure for navigating trees ,
GERARD HUET

(Our zippers will operate over the regex AST) INRIA Rocqencours, France

Zipper = (subtree in focus, context)

path taken to reach the focused subtree t
+ siblings of t

Zippers, illustrated

zipper := tree * context

subtree t path taken to

currently reach t

in focus + siblings of t
context :=

Empty
Left of tree * context
Right of tree * context

left/right parent
sibling context

Zipper

Focused
subtree t

Context

Sibling

Zippers, illustrated
f |

PN

We can focus on different subtrees,
which creates a new zipper
with an updated context

b N

/8

Computing Brzozowski Derivatives using Zippers

Efficient Parsing with Derivatives and Zippers

Edelmann, Romain &

=PrFL

: Use (a variant of) zippers to compute Brzozowski derivatives!

|dea
= Efficient lexing + parsing (no DFAs needed)

Computing Brzozowski Derivatives using Zippers

Step 1: Represent regex as a zipper
Step 2: Move the focus & update the context
every time Oc is recursively called
(multiple recursive calls = multiple focuses)

o.(c) = €
5.(ch) = 1
o.(€) = 1
Oc(r1) - ra V 6.(rp) if r1 nullable
Oc(ry - r2) = .
O0c(r1) - 2 otherwise
5C(J-) = 1
Oc(riVry) = 06c(r1)V éc(r2)

Oc () = 8c(r) - r+

Encoding Regexes as Zippers: Handling +

Edelmann’s insight:

Only 2 new kinds of AST constructors are introduced by the Brzozowski derivative:
i+, *}
When we encounter + we need to split the focus between two sub-terms:

O,(r1 +ry) =0.(ry) + 0.(rp)

= use sets to keep track of different choices of focus

Encoding Regexes as Zippers: Handling ¢

When we encounter ¢, we have to keep the rest of the expression in the context

before recursively calling 6c on r,

5C(7‘1) ° I”2+
o.(r)) - 1y

rest of the
expression

5C(I”1 . 7’2) —

Order matters = use lists to represent e

Encoding Regexes as (a variant of) Zippers

zipper := set context (elements in set = different choices of focus)
where
context := 1list re (elements in list = subterms to be concatenated)

IR

(r, » r,) + r,

{ [r,, r,1, [r,]}

* &
. &
L &

re

L
- w
-

ﬁ

Zippers = Antimirov derivatives?
Edelmann: the zipper-based technique is reminiscent of Antimirov’s partial derivatives

Our goal: prove that Antimirov derivatives & zipper representation of Brzozowski
derivatives result in equivalent sets of regexes

What we've done:

Auxiliary lemmas, e.g. zipper (r, + r,) = zipper r, U zipper r,
Extracted Edelmann’s Coq zipper implementation - OCaml code

Future work:

Prove that matchers based on zippers & {Antimirov, Brzozowski} accept the same
strings

Using QuickCheck to guide our Coq development

Q BASE_QUICKCHECK

Idea: Test lemma statements in OCaml before proving them in Coq

- Tested lemma statements on 1-10 million random regexes
- QuickCheck found counterexamples to some of our conjectured
lemma statements!

The Big Picture Bounds on height and size

Zippers
Brzozowski

Antimirov

Inductive Relation

Finitely many derivatives for a given regex

Big Thank You to Jules!

Zippers
Brzozowski

Antimirov

Inductive Relation

