
derivatives of
regular expressions

ernest ng & laura zielinski

Inductive re :=
| Void : re
| Epsilon : re
| Atom : char -> re
| Union : re -> re -> re
| Concat : re -> re -> re
| Star : re -> re.

Regular Expressions

Union (Star (Atom a)) (Atom b)

Inductive matches : re -> string -> Prop :=
| matches_epsilon : matches Epsilon []
| matches_atom a : matches (Atom a) [a]
| matches_union_l r1 r2 s :

matches r1 s -> matches (Union r1 r2) s
…

Matching a String (list char)

matches (Union (Star (Atom a)) (Atom b)) [‘a’; ‘a’; ‘a’] ✅
matches (Union (Star (Atom a)) (Atom b)) [‘b’; ‘a’] ❌

Fixpoint b_der (r : re) (c : char) : re

The Brzozowski Derivative

…returns a regex which matches “the rest of the string” after matching c, e.g.

Matching Using the Brzozowski Derivative

(** isEmpty returns true iff r matches the empty string *)

Definition b_matches (r : re) (s : string) : bool :=
isEmpty (fold_left b_der s r).

Matching Using the Brzozowski Derivative

Lemma b_matches_matches (r : re) (s : string) :
b_matches r s = true <-> matches r s.

Blowing Up

Fixpoint a_der (r : re) (c : char) : gset re

The Antimirov Derivative

…returns a set of regexes, one of which matches “the rest of the string” after
matching c, e.g.

“partial derivative”

(** a_der_set applies a_der pointwise to elements in a set *)
(** nullable returns true iff some regex in the set matches the
empty string *)

Definition a_matches (r : re) (s : string) : bool :=
 nullable (fold_left a_der_set s {[r]}).

Matching Using the Antimirov Derivative

Theorem a_b_matches : forall (r : re) (s : string),
 a_matches r s <-> b_matches r s.

Antimirov 🤝 Brzozowski

author = {Brzozowski, Janusz A.},
title = {Derivatives of Regular Expressions},
year = {1964}

Finitude

Finitude

(** All possible partial derivatives (maybe more) *)
Fixpoint A_der (r : re) : gset re :=
 match r with
 | Void => {[Void]}
…

(** gsets are finite *)
Theorem a_finite : forall (r : re) (s : string),

a_der_str r s ⊆ A_der r.

Viewing Regexes as Trees

Union (Star (Atom a))
 (Concat (Atom a) (Atom b))

Union

Star Concat

Atom a Atom a Atom b

a* + (a • b)

Size & Height of Derivatives

1. ∀ r c. height δc(r) <= 2 * height r

2. No constant bounds the size increase of
Brzozowski derivatives

Michael Greenberg proved that:

Our aim: Prove similar results for Antimirov!

(So far, we’ve proven (1) holds for the max height of all terms contained in
the set of Antimirov derivatives)

(size & height are defined wrt the regex AST)

Zippers: Background
Purely functional data structure for navigating trees
(Our zippers will operate over the regex AST)

path taken to reach the focused subtree t
+ siblings of t

Zipper = (subtree in focus, context)

(JFP 1997)

Zippers, illustrated
Context

Zipper

Focused
subtree t

zipper := tree * context

context :=
 | Empty
 | Left of tree * context
 | Right of tree * context

subtree t
currently
in focus

path taken to
reach t

+ siblings of t

parent
context

left/right
sibling

Sibling

Key idea:
We can focus on different subtrees,
which creates a new zipper
with an updated context

Zippers, illustrated

Computing Brzozowski Derivatives using Zippers

Idea: Use (a variant of) zippers to compute Brzozowski derivatives!
 ⇒ Efficient lexing + parsing (no DFAs needed)

Step 1: Represent regex as a zipper
Step 2: Move the focus & update the context

every time δc is recursively called
(multiple recursive calls == multiple focuses)

Computing Brzozowski Derivatives using Zippers

Encoding Regexes as Zippers: Handling +

Edelmann’s insight:

Only 2 new kinds of AST constructors are introduced by the Brzozowski derivative:

{+, •}

When we encounter +, we need to split the focus between two sub-terms:

⇒ use sets to keep track of different choices of focus

Encoding Regexes as Zippers: Handling •

When we encounter •, we have to keep the rest of the expression in the context

before recursively calling δc on r₁

Order matters ⇒ use lists to represent •

rest of the
expression

{ [r₁, r₂], [r₃] }(r₁ • r₂) + r₃ ≅

zipper := set context

 where

 context := list re

Encoding Regexes as (a variant of) Zippers

re

(elements in set = different choices of focus)

(elements in list = subterms to be concatenated)

Zippers ≅ Antimirov derivatives?

Edelmann:

Our goal: prove that Antimirov derivatives & zipper representation of Brzozowski
derivatives result in equivalent sets of regexes

What we’ve done:
Auxiliary lemmas, e.g. zipper (r₁ + r₂) = zipper r₁ ∪ zipper r₂
Extracted Edelmann’s Coq zipper implementation → OCaml code

Future work:
Prove that matchers based on zippers & {Antimirov, Brzozowski} accept the same
strings

Idea: Test lemma statements in OCaml before proving them in Coq

- Tested lemma statements on 1-10 million random regexes
- QuickCheck found counterexamples to some of our conjectured

lemma statements!

Using QuickCheck to guide our Coq development

The Big Picture

Antimirov

Brzozowski
Zippers

Inductive Relation

Bounds on height and size

Finitely many derivatives for a given regex

Big Thank You to Jules!

Antimirov

Brzozowski
Zippers

Inductive Relation

Jules

